当前位置: 首页 > news >正文

C++内存管理和模板初阶

C/C++内存分布

请看代码:

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{static int staticVar = 1;int localVar = 1;int num1[10] = { 1, 2, 3, 4 };char char2[] = "abcd";const char* pChar3 = "abcd";int* ptr1 = (int*)malloc(sizeof(int) * 4);int* ptr2 = (int*)calloc(4, sizeof(int));int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);free(ptr1);free(ptr3);
}

请看题目

选项 : A.栈  B.堆  C.数据段(静态区)  D.代码段(常量区)
globalVar在哪里?__C__   staticGlobalVar在哪里?__C__
staticVar在哪里?__C__   localVar在哪里?__A__
num1 在哪里?__A__
char2在哪里?__A__ * char2在哪里?__A_
pChar3在哪里?__A__ * pChar3在哪里?__A__
ptr1在哪里?__A__ * ptr1在哪里?__B__

通过之前C语言的学习我们可以知道,内存区域主要分为几个区:
从上至下分别是栈,堆,静态区,常量区
在这里插入图片描述

const修饰的变量就是常量,放在常量区。局部变量放在栈,它是由编译器自动分配释放的。堆区主要存放动态变量,需要用户自我管理和分配。静态区就是主要存放全局变量和静态变量的。

在C++中的内存也是相似的:
下面给出一个对比:
数据段就是我们所说的静态区
代码段就是常量区
在这里插入图片描述
这里给出说明:

  1. 栈又叫堆栈–非静态局部变量/函数参数/返回值等等,栈是向下增长的
  2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信。
  3. 堆用于程序运行时动态内存分配,堆是可以上增长的
  4. 数据段–存储全局数据和静态数据。
  5. 代码段–可执行的代码/只读常量

向上增长就是说由低地址指向高地址,而向下增长则相反

C语言中动态内存管理方式:malloc/calloc/realloc/free

我们知道,在C语言中我们分别用malloc/calloc/realloc来开辟动态空间
我们想再来回忆一下三者的区别:
malloc只是开辟空间,不会初始化
calloc开辟空间并且初始化
realloc在可以在原本的空间上扩容,也可以重新开辟新的空间

下面我们看一段代码:

void Test()
{int* p1 = (int*)malloc(sizeof(int));free(p1);int* p2 = (int*)calloc(4, sizeof(int));int* p3 = (int*)realloc(p2, sizeof(int) * 10);free(p2);free(p3);
}

运行代码你就会发现:
代码会发生异常
因为扩容10个int类型的空间在原本的空间上足够了,所以是在本地扩容,不需要free这里原本开辟好的空间p2,但是如果把这里realloc的10改成100,就是异地扩容了,就需要free p2,防止内存泄漏
在这里插入图片描述

C++内存管理方式

我们通常说到,C++是兼容C的,那么C语言中的内存管理方式可以用到C++中吗?
答案是肯定的!

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。

new/delete操作内置类型

相比较C语言的内存管理方式,这里有很大的区别,并且这里设计的本意是为自定义类型而生的!
关于他们的特征我们稍后进行讲解
我们用代码来看会更加地的清晰:
可以看到,new在不用进行强制的类型转换

void Test()
{// 动态申请一个int类型的空间int* ptr4 = new int;// 动态申请一个int类型的空间并初始化为10int* ptr5 = new int(10);// 动态申请10个int类型的空间int* ptr6 = new int[3];delete ptr4;delete ptr5;delete[] ptr6;
}

给出一个图,大家就可以更好地理解:
在这里插入图片描述
总结下来就是:
申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用new[]和delete[],注意:匹配起来使用。

new/delete操作内置类型

请看代码:

class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;}~A(){cout << "~A():" << this << endl;}
private:int _a;
};
int main()
{A* p1 = (A*)malloc(sizeof(A));A* p2 = new A(1);free(p1);delete p2;int* p3 = (int*)malloc(sizeof(int)); int* p4 = new int;free(p3);delete p4;return 0;
}

运行结果:
这就说明new在为自定义类型申请空间的时候调用了类的构造函数,而delete在清理空间时调用了析构函数
在这里插入图片描述
而我们再加两行代码:

class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;}~A(){cout << "~A():" << this << endl;}
private:int _a;
};
int main()
{A* p1 = (A*)malloc(sizeof(A));A* p2 = new A(1);free(p1);delete p2;int* p3 = (int*)malloc(sizeof(int)); int* p4 = new int;free(p3);delete p4;return 0;
}

运行结果如下:
这就说明了对于内置类型,new和delete和malloc和free没有差别,这就验证了我之前提到的:
new和delete是为自定义类型而生的!

在这里插入图片描述
下面我们看多个元素开辟和释放:
可以看到,我们开辟十个的话就会调用十次构造函数和析构函数
在这里插入图片描述
这就是一个需要注意的点:
在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与free不会。new和delete是两个操作符,而malloc和free是两个函数

operator new与operator delete函数

new和delete是用户进行动态内存申请和释放的操作符operator new 和operator delete是系统提供的全局函数new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间。
也就是说,new和delete这两个操作符的实习实际上是靠这两个函数的调用所实现的!
但是通过汇编语言来看:
operator new 实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。

new和delete的实现原理

内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。

自定义类型

new的原理

  1. 调用operator new函数申请空间
  2. 在申请的空间上执行构造函数,完成对象的构造

delete的原理

  1. 在空间上执行析构函数,完成对象中资源的清理工作
  2. 调用operator delete函数释放对象的空间

new T[N]的原理

  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请
  2. 在申请的空间上执行N次构造函数

delete[]的原理

  1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
  2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释
    放空间

模板初阶

泛型编程

在之前的C语言学习中我们常常用到swap函数,但是我们的swap的类型不确定就可能需要用函数重载,或者选择方便的typedef关键字来简化代码:
例如:

void Swap(int& left, int& right)
{int temp = left;left = right;right = temp;
}
void Swap(double& left, double& right)
{double temp = left;left = right;right = temp;
}
void Swap(char& left, char& right)
{char temp = left;left = right;right = temp;
}

使用函数重载虽然可以实现,但是有一下几个不好的地方:

  1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函
  2. 代码的可维护性比较低,一个出错可能所有的重载均出错

那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?

如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件(即生成具体类型的代码),那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此乘凉。

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

这就是我们所说的模板:
模板分为两类,一类是函数模板,另一类则是类模板

函数模板

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。

针对于上面的swap函数,函数模板格式如下:
template和typename均为关键字,

template<typename T>
void Swap(T& left, T& right)
{T temp = left;left = right;right = temp;
}

注意:
typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)

其实啊,函数模板他并不是一个模板!
函数模板是一个蓝图,它本身并不是函数是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器

而在调用函数时就是函数模板实例化了:
在这里插入图片描述
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用

也就是说编译器自行判断类型使用!

比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。

函数模板的实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化。
模板参数实例化分为:隐式实例化和显式实例化。

  1. 隐式实例化:让编译器根据实参推演模板参数的实际类型
    请看这段代码:
    该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,编译器无法确定此处到底该将T确定为int 或者 double类型而报错
template<class T>
T Add(const T& left, const T& right)
{return left + right;
}
int main()
{int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a1, a2);Add(d1, d2);return 0;
}

正确的应该这样:
将类型强制转换

template<class T>
T Add(const T& left, const T& right)
{return left + right;
}
int main()
{int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a, (int)d);return 0;
}

同时我们也可以选择显式实例化:

  1. 显式实例化:在函数名后的<>中指定模板参数的实际类型
int main(void)
{int a = 10;double b = 20.0;// 显式实例化Add<int>(a, b);return 0;
}
模板参数的匹配原则
  1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数这样就可以节省一点时间
// 专门处理int的加法函数
int Add(int left, int right)
{return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{return left + right;
}
void Test()
{Add(1, 2); // 与非模板函数匹配,编译器不需要特化Add<int>(1, 2); // 调用编译器特化的Add版本
}
  1. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板
// 专门处理int的加法函数
int Add(int left, int right)
{return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{return left + right;
}
void Test()
{Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
}
  1. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换
类模板

类模板的格式如下:

template<class T1, class T2, ..., class Tn>
class 类模板名
{// 类内成员定义
};

简单地讲一下类模板的实例化吧:

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类

例如:

//Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
// Vector类名,Vector<int> s1才是类
Vector<int> s1;
Vector<double> s2

好了,今天的分享到这里就结束了,谢谢大家的支持!

相关文章:

C++内存管理和模板初阶

C/C内存分布 请看代码&#xff1a; int globalVar 1; static int staticGlobalVar 1; void Test() {static int staticVar 1;int localVar 1;int num1[10] { 1, 2, 3, 4 };char char2[] "abcd";const char* pChar3 "abcd";int* ptr1 (int*)mallo…...

QtRO(Qt Remote Objects)分布式对象远程通信

一、什么是QtRO Qt Remote Objects&#xff08;QRO&#xff09;是Qt提供的一种用于实现远程对象通信的机制。 QtRO支持两种类型的通信&#xff1a;RPC&#xff08;远程过程调用&#xff09;和LPC&#xff08;本地进程通信&#xff09;。 RPC&#xff08;远程过程调用&#xf…...

【K8s】1# 使用kuboard-spray安装K8s集群

文章目录 搭建k8s集群1.推荐配置1.1.服务器配置1.2.软件版本 2.使用Kuboard-Spray安装k8s集群2.1.配置要求2.2.操作系统兼容性2.3.安装 Kuboard-Spray2.4.加载离线资源包2.5.规划并安装集群2.6.安装成功2.7.访问集群 3.涉及的命令3.1.linux 4.问题汇总Q1&#xff1a;启动离线集…...

leetCode算法—12. 整数转罗马数字

12. 整数转罗马数字 难度&#xff1a;中等 ** 罗马数字包含以下七种字符&#xff1a; I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如&#xff0c; 罗马数字 2 写做 II &#xff0c;即…...

使用OpenCV4实现工业缺陷检测的六种方法

目录 1 机器视觉2 缺陷检测3 工业上常见缺陷检测方法 1 机器视觉 机器视觉是使用各种工业相机&#xff0c;结合传感器跟电气信号实现替代传统人工&#xff0c;完成对象识别、计数、测量、缺陷检测、引导定位与抓取等任务。其中工业品的缺陷检测极大的依赖人工完成&#xff0c;…...

Excel 获取当前行的行数

ROW() 获取当前行 ROW()1 获取当前行然后支持二次开发...

R语言【stringr】——str_detect 检测是否存在字符串的匹配项

Package stringr version 1.5.1 str_detect(string, pattern, negate FALSE) 参数【string】&#xff1a;输入向量。既可以是字符向量&#xff0c;也可以是强制作为一个字符向量。 参数【pattern】&#xff1a;要寻找的模式。默认解释为正则表达式&#xff0c;如 vignette(&…...

【SpringMVC】SpringMVC的请求与响应

文章目录 0. Tomcat环境的配置1. PostMan工具介绍创建WorkSpace建立新的请求 2. 请求映射路径案例结构与代码案例结构案例代码 案例存在问题解决方案方法方法升级版——配置请求路径前缀注解总结 3. Get请求与Post请求案例结构与案例代码案例结构案例代码 Get请求Post请求接收中…...

Spring Boot3通过GraalVM生成exe执行文件

一、安装GraalVM 1、官网&#xff1a;https://www.graalvm.org/downloads/ 2、配置环境变量 2.1、环境变量必须使用JAVA_HOME&#xff0c;否则会出现问题 2.2、在系统变量配置Path,%JAVA_HOME%\bin&#xff0c;注意必须放在顶部第一位 2.3、配置jdk的环境变量&#xff0c;在P…...

【Amazon 实验②】使用缓存策略及源请求策略,用于控制边缘缓存的行为及回源行为

文章目录 1. 了解缓存策略和源请求策略1.1 使用缓存键和缓存策略 实验&#xff1a;使用CloudFront缓存策略和缓存键控制缓存行为 接上一篇文章【Amazon 实验①】使用 Amazon CloudFront加速Web内容分发&#xff0c;我们现在了解和配置如何使用缓存策略及源请求策略&#xff0c;…...

达梦数据对比工具的部署与使用

1、拷贝达梦软件bin目录到Oracle服务器&#xff08;root用户&#xff09; 压缩Linux rh6 x86版本的达梦数据库bin目录&#xff0c;例如压缩文件为dmbin.tar.gz&#xff0c;将文件拷贝到Oracle服务器指定目录并解压&#xff08;如&#xff1a;/home/oracle/dmbin&#xff09;&a…...

TLC2543(12位A/D转换器)实现将输入的模拟电压显示到数码管上

代码&#xff1a; #include <reg51.h> #define uchar unsigned char #define uint unsigned int// 数码管0-9 unsigned char seg[] {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F}; sbit SDO P1^0; sbit SDI P1^1; sbit CS P1^2; sbit CLK P1^3; s…...

npm的使用技巧

以下是一些NPM&#xff08;Node Package Manager&#xff09;的使用技巧&#xff1a; 1. **获取帮助**&#xff1a; - 使用 npm help 或者 npm <command> --help 可以获取关于特定命令的帮助信息。 2. **命令自动完成**&#xff1a; - 在 Bash、Zsh 等 shell 中&…...

MySQL 5.6的新特性

MySQL 5.6是一个主要的版本发布&#xff0c;它在性能、可伸缩性、可靠性和可用性方面引入了多项重要改进和新特性。它在2013年发布&#xff0c;相比于它的前身MySQL 5.5&#xff0c;MySQL 5.6带来了以下关键升级&#xff1a; 优化的InnoDB存储引擎&#xff1a;MySQL 5.6中的Inn…...

大模型重构云计算:AI原生或将改变格局

摘要&#xff1a;随着AI技术的快速发展&#xff0c;大模型正逐渐改变云计算的格局。本文将深入探讨大模型如何重构云计算&#xff0c;并分析其对云计算的影响。 一、开篇引言 近年来&#xff0c;人工智能技术的飞速发展&#xff0c;特别是大模型的崛起&#xff0c;正在对云计算…...

一文讲清什么是TypeScript装饰器以及如何使用TypeScript装饰器

TypeScript 装饰器是什么&#xff1f; 装饰器&#xff08;Decorator&#xff09;是TypeScript提供的一个高级语法&#xff0c;它类似于一种特殊类型的声明&#xff0c;可以附加到类声明&#xff0c;方法&#xff0c;访问符&#xff0c;属性或参数上。装饰器主要以函数的形式出…...

恶意软件样本行为分析——Process Monitor和Wireshark

1.1 实验名称 恶意软件样本行为分析 1.2 实验目的 1) 熟悉 Process Monitor 的使用 2) 熟悉抓包工具 Wireshark 的使用 3) VMware 的熟悉和使用 4) 灰鸽子木马的行为分析 1.3 实验步骤及内容 第一阶段&#xff1a;熟悉 Process Monitor 的使用 利用 Process …...

【XR806开发板试用】通过http请求从心知天气网获取天气预报信息

1. 开发环境搭建 本次评测开发环境搭建在windows11的WSL2的Ubuntu20.04中&#xff0c;关于windows安装WSL2可以参考文章: Windows下安装Linux(Ubuntu20.04)子系统&#xff08;WSL&#xff09; (1) 在WSL的Ubuntu20.04下安装必要的工具的. 安装git: sudo apt-get install git …...

NPM介绍与使用

什么是NPM&#xff1f; NPM&#xff08;Node Package Manager&#xff09;是一个强大的包管理工具&#xff0c;专门用于Node.js应用程序的依赖管理。它允许开发者轻松地分享、安装、更新和管理项目中使用的库、工具和框架。 NPM的安装 在使用NPM之前&#xff0c;请确保你的机…...

servlet +thymeleaf渲染引擎

servlet thymeleaf渲染引擎 一、maven坐标 <dependency><groupId>org.thymeleaf</groupId><artifactId>thymeleaf</artifactId><version>3.0.12.RELEASE</version> <!-- 使用适当的Thymeleaf版本 --> </dependency> &…...

10分钟了解nextTick,并实现简易版本的nextTick

在 Vue.js 中&#xff0c;有一个特殊的方法 nextTick&#xff0c;它在 DOM 更新后执行一段代码&#xff0c;起到等待 DOM 绘制完成的作用。本文会详细介绍 nextTick 的原理和使用方法&#xff0c;并实现一个简易版的 nextTick&#xff0c;加深对它的理解。 一. 什么是 nextTic…...

oracle表空间对象迁移到其他表空间

oracle数据库的磁盘空间满了&#xff0c;除了简单粗暴的增加磁盘空间外&#xff0c;还可以缩小表空间的datafile&#xff0c;因为正常业务运行中&#xff0c;表数据的删除和增加&#xff0c;会造成表空间里面里面有很多空的地方。方案有很多种&#xff0c;我这里简单介绍一下&a…...

<stdlib.h>头文件: C 语言常用标准库函数详解

文章目录 引言1. <stdlib.h> 概览1.1 头文件包含 2. 内存管理函数2.1 malloc 函数2.2 calloc 函数2.3 realloc 函数2.4 free 函数 3. 随机数生成函数3.1 rand 函数3.2 srand 函数 4. 字符串转换函数4.1 atoi 函数4.2 atof 函数4.3 itoa 函数4.4 ltoa 函数4.5 ultoa函数 5…...

Qt前端技术:3.QSS字体样式

small-caps就是让这个文本中的小写字母用大写的形式写出来并且在用大写的形式表达出来后他本身的大小会变小 有绝对尺寸和相对尺寸的区别 绝对尺寸一般是cm&#xff0c;英寸之类的 相对尺寸如px之类的是由显示器的屏幕分辨率来决定的 如windows用户分辨率一般是96像素点每英…...

阿里面试官:面试了一个能力相当不错的候选人,但背调时,他前同事和领导都说他人品很差,纠结该不该要他?...

* 你好&#xff0c;我是前端队长&#xff0c;在职场&#xff0c;玩副业&#xff0c;文末有福利! 在职场中&#xff0c;背调是个躲不开的事情。不管是各行各业背调可能都存在&#xff0c;只是形式不同而已。而且现在大环境不好&#xff0c;可能对个人的要求还更高一些。 背调的主…...

如何设计树形结构

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 前置知识&#xff1a;前…...

限量25台,川崎亮相Ninja ZX-10RR冬季限量款

最近川崎发布了自家ZX-10RR的超级限量版&#xff0c;官方称之为冬季测试版&#xff0c;之前也有一些车型推出过冬季测试版&#xff0c;通常是在年底推出&#xff0c;因为这个时候北半球都是非常寒冷的冬天。 不过这台ZX-10RR冬季测试版&#xff0c;并不仅仅只是限量那么简单&am…...

【QT八股文】系列之篇章1 | QT的基础知识及事件/机制

【QT八股文】系列之篇章1 | QT的基础知识及事件/机制 前言0. 基础Qt/PyQt5介绍/关联Qt的优缺点&#xff08;为什么要用qt来做界面&#xff09;Qt 的核心机制请简要介绍一下Qt中的主窗口&#xff08;MainWindow&#xff09;类&#xff0c;它有哪些重要的函数和成员变量&#xff…...

SpringBoot 3 集成Hive 3

前提条件: 运行环境&#xff1a;Hadoop 3.* Hive 3.* MySQL 8 &#xff0c;如果还未安装相关环境&#xff0c;请参考&#xff1a;Hive 一文读懂 Centos7 安装Hadoop3 单机版本&#xff08;伪分布式版本&#xff09; SpringBoot 2 集成Hive 3 pom.xml <?xml ver…...

STL中优先队列的模拟实现与仿函数的介绍

文章目录 仿函数优先队列的模拟实现 仿函数 上回我们说到&#xff0c;优先队列的实现需要用到仿函数的特性 让我们再回到这里 这里我们发现他传入的用于比较的东西竟然是一个类模板&#xff0c;而不是我们所见到的函数 我们可以先创建一个类&#xff0c;用于比较大小 struc…...

镇江网站seo公司/线上培训

1 同时导出表和对应的索引(记下所用的时间)2 同时导入表和对应的索引(记下所用的时间)3 单独导出表(记录时间)4 单独导入表(记录时间)5 重建索引(记录时间)实验表和索引的信息如下&#xff1a;USER01aaron> select count(*) from test01;COUNT(*)----------4643904USER01aar…...

今日油价92汽油下调/桂林seo顾问

#include <stdio.h>#include <math.h>int main(){ /*一个整数&#xff0c;加上100后是一个 完全平方数&#xff0c;再加上168后也是 一个完全平方数,求该数是多少*/ long int i,x,y; for (i1;i<100000;i) { xsqrt(i100); …...

招工做哪个网站/百度大数据预测平台

深入C系列&#xff1a; 1、《C STL中文版》 2、《More Effective C&#xff08;中文版&#xff09;》 3、《深度探索C对象模型》 4、《泛型编程与STL》 5、《Effective STL》 6、《C Primer中文版》 7、《C程序设计原理与实践》 8、《C编程思想》 9、《C编程规范&…...

wordpress媒体库不能用云/站长工具最近查询

之前我们讨论过《Linux Oracle 11g dataguard物理standby 配置过程》&#xff0c; 但是在实际过程中会遇到不同的问题&#xff0c;首先我们讨论下&#xff2f;&#xff32;&#xff21;&#xff23;&#xff2c;&#xff25; &#xff24;&#xff21;&#xff34;&#xff21…...

网站设计的企业/青岛网站建设公司电话

某次工作需要&#xff0c;回顾了一下过去做的某个项目&#xff0c;突然发现自制的 javascrip Calendar(日历控件)&#xff0c;一时遐想无限&#xff0c;勾起不少有关当年(当月?)那些雄心壮志的回忆。 从少不更事&#xff0c;到处变不惊&#xff0c;人少了很多冲劲&#xff0c;…...

个人做网站 优帮云/淘宝网店运营

手动封装on事件在Vue中的作用以下代码实现的是“防重复点击”效果main.js中设置&#xff1a;Vue.prototype.$on function (event, func) {let previous 0let newFunc funcif (event click) {newFunc function () {const now new Date().getTime()if (previous 1000 <…...