导行电磁波从纵向场分量求其他方向分量的矩阵表示
导行电磁波从纵向场分量求解其他方向分量的矩阵表示
导行电磁波传播的特点
电磁波在均匀、线性、各向同性的空间中沿着 z z z轴传播,可用分离变量法将时间轴、 z z z轴与 x , y x,y x,y轴分离,电磁波的形式可表示为:
E ⃗ = E ⃗ ( x , y ) e − γ z e j ω t H ⃗ = H ⃗ ( x , y ) e − γ z e j ω t \begin{align} \vec E&=\vec E(x,y) \textrm e^{-\gamma z} \textrm e^{j\omega t}\\ \vec H&=\vec H(x,y) \textrm e^{-\gamma z} \textrm e^{j\omega t}\\ \end{align} EH=E(x,y)e−γzejωt=H(x,y)e−γzejωt
纵向场分量的求解导行电磁波的电场和磁场
对于这种波的求解,可以先求出电场、磁场在 z z z轴的分量,然后根据,然后再根据麦克斯韦方程组求出电磁场在 x , y x,y x,y, 由导行电磁波的数学表达式(1), (2)可知, ∂ ∂ z H x = − γ H x \frac{\partial}{\partial z}H_x=-\gamma H_x ∂z∂Hx=−γHx, ∂ ∂ z H y = − γ H y \frac{\partial}{\partial z}H_y=-\gamma H_y ∂z∂Hy=−γHy, ∂ ∂ z E x = − γ E x \frac{\partial}{\partial z}E_x=-\gamma E_x ∂z∂Ex=−γEx, ∂ ∂ z E y = − γ E y \frac{\partial}{\partial z}E_y=-\gamma E_y ∂z∂Ey=−γEy.
从纵向场分量求解其他方向电场和磁场分量及其矩阵表示
麦克斯韦方程组可表示如下:
∇ × H ⃗ = ∂ D ⃗ ∂ t + J ⃗ ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ ⋅ D ⃗ = ρ ∇ ⋅ B ⃗ = 0 \begin{align} \nabla \times \vec H &= \frac{\partial \vec D}{\partial t}+\vec J\\ \nabla \times \vec E &= - \frac{\partial \vec B}{\partial t}\\ \nabla \cdotp \vec D &= \rho\\ \nabla \cdotp \vec B &= 0 \end{align} ∇×H∇×E∇⋅D∇⋅B=∂t∂D+J=−∂t∂B=ρ=0
如果已知 H z , E z H_z, E_z Hz,Ez并且知道导行电磁波的形式如公式(1)和(2)所示,并认为传播空间中不存在电荷与电流, J ⃗ = 0 , ρ = 0 \vec J=0, \rho=0 J=0,ρ=0,方程式(3)-(4)可表示为:
∇ × H ⃗ = [ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z H x H y H z ] = j ω ε E ⃗ ∇ × E ⃗ = [ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z E x E y E z ] = − j ω μ H ⃗ \begin{align} \nabla \times \vec H &=\begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ H_x &H_y&H_z \end{bmatrix} = j\omega \varepsilon \vec E\\ \nabla \times \vec E &= \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ E_x &E_y&E_z \end{bmatrix} =- j\omega \mu \vec H\\ \end{align} ∇×H∇×E= i∂x∂Hxj∂y∂Hyk∂z∂Hz =jωεE= i∂x∂Exj∂y∂Eyk∂z∂Ez =−jωμH
将(7)式 x x x 分量展开得到(9),将(8)式 y y y 分量展开得到(10)
∂ ∂ y H z + γ H y = j ω ε E x ∂ ∂ x E z + γ E x = j ω μ H y \begin{align} \frac{\partial}{\partial y}H_z+\gamma H_y &=j\omega \varepsilon E_x\\ \frac{\partial}{\partial x}E_z+\gamma E_x &=j\omega \mu H_y\\ \end{align} ∂y∂Hz+γHy∂x∂Ez+γEx=jωεEx=jωμHy
根据(9)和(10),得到用 H z , E z H_z, E_z Hz,Ez表示的 H y , E x H_y, E_x Hy,Ex:
[ E x H y ] = − 1 k c 2 [ γ j ω μ j ω ε γ ] [ ∂ ∂ x 0 0 ∂ ∂ y ] [ E z H z ] \begin{align} \begin{bmatrix} E_x \\ H_y \end{bmatrix} &= -\frac{1}{k_c^2} \begin{bmatrix} \gamma & j\omega\mu \\ j\omega\varepsilon & \gamma \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \end{bmatrix} \begin{bmatrix} E_z \\ H_z \end{bmatrix} \\ \end{align} [ExHy]=−kc21[γjωεjωμγ][∂x∂00∂y∂][EzHz]
将(7)式 y y y 分量展开得到(12),将(8)式 x x x 分量展开得到(13)
− ∂ ∂ x H z − γ H x = j ω ε E y ∂ ∂ y E z + γ E x = j ω μ H x \begin{align} -\frac{\partial}{\partial x}H_z-\gamma H_x &=j\omega \varepsilon E_y\\ \frac{\partial}{\partial y}E_z+\gamma E_x &=j\omega \mu H_x\\ \end{align} −∂x∂Hz−γHx∂y∂Ez+γEx=jωεEy=jωμHx
根据(12)和(13),得到用 H z , E z H_z, E_z Hz,Ez表示的 H x , E y H_x, E_y Hx,Ey:
[ E y H x ] = − 1 k c 2 [ γ − j ω μ − j ω ε γ ] [ ∂ ∂ y 0 0 ∂ ∂ x ] [ E z H z ] \begin{align} \begin{bmatrix} E_y \\ H_x \end{bmatrix} &= -\frac{1}{k_c^2} \begin{bmatrix} \gamma & -j\omega\mu \\ -j\omega\varepsilon & \gamma \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial y} & 0 \\ 0 & \frac{\partial}{\partial x} \end{bmatrix} \begin{bmatrix} E_z \\ H_z \end{bmatrix} \\ \end{align} [EyHx]=−kc21[γ−jωε−jωμγ][∂y∂00∂x∂][EzHz]
相关文章:
导行电磁波从纵向场分量求其他方向分量的矩阵表示
导行电磁波从纵向场分量求解其他方向分量的矩阵表示 导行电磁波传播的特点 电磁波在均匀、线性、各向同性的空间中沿着 z z z轴传播,可用分离变量法将时间轴、 z z z轴与 x , y x,y x,y轴分离,电磁波的形式可表示为: E ⃗ E ⃗ ( x , y )…...

融资项目——swagger2的注解
1. ApiModel与ApiModelProperty(在实体类中使用) 如上图,ApiModel加在实体类上方,用于整体描述实体类。ApiModelProperty(value"xxx",example"xxx")放于每个属性上方,用于对属性进行描述。swagger2网页上的效果如下图&am…...

【性能优化】MySql数据库查询优化方案
阅读本文你的收获 了解系统运行效率提升的整体解决思路和方向学会MySQl中进行数据库查询优化的步骤学会看慢查询、执行计划、进行性能分析、调优 一、问题:如果你的系统运行很慢,你有什么解决方案? 关于这个问题,我们通常首先…...

Chrome浏览器http自动跳https问题
现象: Chrome浏览器访问http页面时有时会自动跳转https,导致一些问题。比如: 开发阶段访问dev环境网址跳https,后端还是http,导致接口跨域。 复现: 先访问http网址,再改成https访问…...

【C++进阶02】多态
一、多态的概念及定义 1.1 多态的概念 多态简单来说就是多种形态 同一个行为,不同对象去完成时 会产生出不同的状态 多态分为静态多态和动态多态 静态多态指的是编译时 在程序编译期间确定了程序的行为 比如:函数重载 动态多态指的是运行时 在程序运行…...

PHP开发日志——循环和条件语句嵌套不同,效率不同(循环内加入条件语句,条件语句判断后加入循环,array_map函数中加入条件语句)
十多年前开发框架时,为了效率不断试过各种代码写法,今天又遇到了,想想php8时代会不会有所变化,结果其实也还是和当年一样,但当年没写博客,但现在可以把数据记录下来了。 PHP_loop_ireflies_dark_forest 项目…...

【Seata源码学习 】 扫描@GlobalTransaction注解 篇一
1. SeataAutoConfiguration 自动配置类的加载 基于SpringBoot的starter机制,在应用上下文启动时,会加载SeataAutoConfiguration自动配置类 # Auto Configure org.springframework.boot.autoconfigure.EnableAutoConfigurationio.seata.spring.boot.aut…...

DBA-MySql面试问题及答案-上
文章目录 1.什么是数据库?2.如何查看某个操作的语法?3.MySql的存储引擎有哪些?4.常用的2种存储引擎?6.可以针对表设置引擎吗?如何设置?6.选择合适的存储引擎?7.选择合适的数据类型8.char & varchar9.Mysql字符集10.如何选择…...

网络爬虫之Ajax动态数据采集
动态数据采集 规则 有时候我们在用 requests 抓取页面的时候,得到的结果可能和在浏览器中看到的不一样,在浏览器中可以看到正常显示的页面教据,但是使用 requests 得到的结果并没有,这是因为requests 获取的都是原始的 HTML 文档…...

c语言的初始学习(练习)
##初学c语言---MOOC浙江大学翁恺先生学习c语言 那么我们先看看这个题目吧,这是初始语法的应用。 记住,我们的程序是按步骤执行的,并不是在不同的两行同时进行。 程序设计:1.了解题目的需要,几个变量需要用到&#x…...

研究论文 2022-Oncoimmunology:AI+癌RNA-seq数据 识别细胞景观
Wang, Xin, et al. "Deep learning using bulk RNA-seq data expands cell landscape identification in tumor microenvironment." Oncoimmunology 11.1 (2022): 2043662. https://www.tandfonline.com/doi/full/10.1080/2162402X.2022.2043662 被引次数࿱…...
ChatGPT4与ArcGIS Pro3助力AI 地理空间分析和可视化及助力科研论文写作
在地学领域,ArcGIS几乎成为了每位科研工作者作图、数据分析的必备工具,而ArcGIS Pro3除了良好地继承了ArcMap强大的数据管理、制图、空间分析等能力,还具有二三维融合、大数据、矢量切片制作及发布、任务工作流、时空立方体等特色功能&#x…...
okhttp系列-一些上限值
1.正在执行的任务数量最大值是64 异步请求放入readyAsyncCalls后,遍历readyAsyncCalls取出任务去执行的时候,如果发现runningAsyncCalls的数量大于等于64,就不从readyAsyncCalls取出任务执行。 public final class Dispatcher {private int …...

C++面向对象(OOP)编程-STL详解(vector)
本文主要介绍STL六大组件,并主要介绍一些容器的使用。 目录 1 泛型编程 2 CSTL 3 STL 六大组件 4 容器 4.1 顺序性容器 4.1.1 顺序性容器的使用场景 4.2 关联式容器 4.2.1 关联式容器的使用场景 4.3 容器适配器 4.3.1 容器适配器的使用场景 5 具体容器的…...

postman几种常见的请求方式
1、get请求直接拼URL形式 对于http接口,有get和post两种请求方式,当接口说明中未明确post中入参必须是json串时,均可用url方式请求 参数既可以写到URL中,也可写到参数列表中,都一样,请求时候都是拼URL 2&am…...

openai最新探索:超级对齐是否可行?
前言 今天来介绍一篇openai最新的paper:弱到强的对齐。 openai专门成立了一个团队来做大模型的超级对齐即superhuman model,之前chatgpt取得成功依赖RLHF即依赖人类反馈,但是作者期望的superhuman model将会是一个能够处理各种复杂问题的强…...

本地websocket服务端结合cpolar内网穿透实现公网访问
文章目录 1. Java 服务端demo环境2. 在pom文件引入第三包封装的netty框架maven坐标3. 创建服务端,以接口模式调用,方便外部调用4. 启动服务,出现以下信息表示启动成功,暴露端口默认99995. 创建隧道映射内网端口6. 查看状态->在线隧道,复制所创建隧道的公网地址加端口号7. 以…...

关于“Python”的核心知识点整理大全37
目录 13.6.2 响应外星人和飞船碰撞 game_stats.py settings.py alien_invasion.py game_functions.py ship.py 注意 13.6.3 有外星人到达屏幕底端 game_functions.py 13.6.4 游戏结束 game_stats.py game_functions.py 13.7 确定应运行游戏的哪些部分 alien_inva…...

Vivado中的FFT IP核使用(含代码)
本文介绍了Vidado中FFT IP核的使用,具体内容为:调用IP核>>配置界面介绍>>IP核端口介绍>>MATLAB生成测试数据>>测试verilogHDL>>TestBench仿真>>结果验证>>FFT运算。 1、调用IP核 该IP核对应手册pg109_xfft.pd…...

创新驱动,边缘计算领袖:亚马逊云科技海外服务器服务再进化
2022年亚马逊云科技re:Invent盛会于近日在拉斯维加斯成功召开,吸引了众多业界精英和创新者。亚马逊云科技边缘服务副总裁Jan Hofmeyr在演讲中分享了关于亚马逊云科技海外服务器边缘计算的最新发展和创新成果,引发与会者热烈关注。 re:Invent的核心主题是…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
Oracle11g安装包
Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...