当前位置: 首页 > news >正文

【贪心】单源最短路径Python实现

文章目录

    • @[toc]
      • 问题描述
      • `Dijkstra`算法
      • `Dijkstra`算法的正确性
        • 贪心选择性质
        • 最优子结构性质
      • `Dijkstra`算法应用示例
      • 时间复杂性
      • `Python`实现

因上努力

个人主页:丷从心

系列专栏:贪心算法

果上随缘


问题描述

  • 给定一个带权有向图 G = ( V , E ) G = (V , E) G=(V,E),其中每条边的权是非负实数,给定 V V V中的一个顶点,称为源
  • 计算从源到所有其他各顶点的最短路长度

Dijkstra算法

  • Dijkstra算法是解单源最短路径问题的一个贪心算法
  • 其基本思想是,设置顶点集合 S S S,并不断地做贪心选择来扩充这个集合,一个顶点属于集合 S S S当且仅当从源到该顶点的最短路径长度已知
  • 初始时, S S S中仅含有源,设 u u u G G G的某一个顶点,把从源到 u u u且中间只经过 S S S中顶点的路称为从源到 u u u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度,用列表parent[i]记录从源到顶点 i i i的最短路径上 i i i的前一个顶点
  • Dijkstra算法每次从 V − S V - S VS中取出具有最短特殊路长度的顶点 u u u,将 u u u添加到 S S S中,同时对列表distparent做必要的修改,当dist[u] + graph[u][i] < dist[i] 时,置dist[i] = dist[u] + graph[u][i],置parent[i] = u
  • 一旦 S S S包含了所有 V V V中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度

Dijkstra算法的正确性

贪心选择性质
  • Dijkstra算法所做的贪心选择是从 V − S V - S VS中选择具有最短特殊路径的顶点 u u u,从而确定从源到 u u u的最短路径长度dist[u],从源到 u u u没有更短的其他路径
  • 事实上,如果存在一条从源到 u u u且长度比dist[u]更短的路,设这条路初次走出 S S S之外到达的顶点为 x ∈ V − S x \in V - S xVS,然后徘徊于 S S S内外若干次,最后离开 S S S到达 u u u

1

  • 在这条路径上,分别记 d ( v , x ) d(v , x) d(v,x) d ( x , u ) d(x , u) d(x,u) d ( v , u ) d(v , u) d(v,u)为顶点 v v v到顶点 x x x、顶点 x x x到顶点 u u u和顶点 v v v到顶点 u u u的路长,那么dist[x] ≤ d ( v , x ) \leq d(v , x) d(v,x) d ( v , x ) + d ( x , u ) = d ( v , u ) < d i s t [ u ] d(v , x) + d(x , u) = d(v , u) < dist[u] d(v,x)+d(x,u)=d(v,u)<dist[u],利用边权的非负性,可知 d ( x , u ) ≥ 0 d(x , u) \geq 0 d(x,u)0,从而推得dist[x] < < <dist[u],此为矛盾
  • 这就证明了dist[u]是从源到顶点 u u u的最短路径长度
最优子结构性质
  • 将添加 u u u之前的 S S S称为 S ′ S^{'} S
  • 当添加了 u u u后,可能出现一条到顶点 i i i的新的特殊路

2

  • 如果这条新特殊路是经过 S ′ S^{'} S到达顶点 u u u,然后从 u u u经一条边直接到达顶点 i i i,则这种路的最短的长度是dist[u] + + +c[u][i],此时,如果dist[u] + + +c[u][i] < < <dist[i],则算法中用dist[u] + + +c[u][i]作为dist[i]的新值
  • 如果这条新特殊路经过 S ′ S^{'} S到达 u u u后,不是从 u u u经一条边直接到达 i i i,而是回到 S ′ S^{'} S中某个顶点 x x x,最后才到达顶点 i i i,那么由于 x x x S ′ S^{'} S中,因此 x x x u u u先加入 S S S,故从源到 x x x的路的长度比从源到 u u u,再从 u u u x x x的路的长度小,于是当前dist[i]的值小于这条新特殊路的长度,因此,在算法中不必考虑这种路
  • 由此可知,不论算法中dist[u]的值是否有变化,它总是关于当前顶点集 S S S到顶点 u u u的最短特殊路径长度

Dijkstra算法应用示例

  • 对下图中的有向图,应用Dijkstra算法计算从源顶点 1 1 1到其他顶点间最短路径的过程如下表所示

3

迭代 S S S u u udist[2]dist[3]dist[4]dist[5]
初始 { 1 } \set{1} {1} − - 10 10 10 m a x i n t maxint maxint 30 30 30 100 100 100
1 1 1 { 1 , 2 } \set{1 , 2} {1,2} 2 2 2 10 10 10 60 60 60 30 30 30 100 100 100
2 2 2 { 1 , 2 , 3 } \set{1 , 2 , 3} {1,2,3} 4 4 4 10 10 10 50 50 50 30 30 30 90 90 90
3 3 3 { 1 , 2 , 4 , 3 } \set{1 , 2 , 4 , 3} {1,2,4,3} 3 3 3 10 10 10 50 50 50 30 30 30 60 60 60
4 4 4 { 1 , 2 , 4 , 3 , 5 } \set{1 , 2 , 4 , 3 , 5} {1,2,4,3,5} 5 5 5 10 10 10 50 50 50 30 30 30 60 60 60

时间复杂性

  • 对于一个具有 n n n个顶点的带权有向图,Dijkstra算法进行二重循环,需要 O ( n 2 ) O(n^{2}) O(n2)时间

Python实现

import sysclass Graph:def __init__(self, vertices):self.V = verticesself.graph = [[0 for _ in range(vertices)] for _ in range(vertices)]def printSolution(self, dist, parent):for v in range(self.V):path = []curr = vwhile curr != -1:path.append(curr)curr = parent[curr]path.reverse()print((v, dist[v], path))def minDistance(self, dist, sptSet):min_value = sys.maxsizemin_index = -1for v in range(self.V):if dist[v] < min_value and not sptSet[v]:min_value = dist[v]min_index = vreturn min_indexdef dijkstra(self, src):dist = [sys.maxsize] * self.Vdist[src] = 0sptSet = [False] * self.Vparent = [-1] * self.Vfor _ in range(self.V):u = self.minDistance(dist, sptSet)sptSet[u] = Truefor v in range(self.V):if self.graph[u][v] != 0 and 0 < dist[u] + self.graph[u][v] < dist[v] and not sptSet[v]:dist[v] = dist[u] + self.graph[u][v]parent[v] = uself.printSolution(dist, parent)g = Graph(9)
g.graph = [[0, 4, 0, 0, 0, 0, 0, 8, 0],[4, 0, 8, 0, 0, 0, 0, 11, 0],[0, 8, 0, 7, 0, 4, 0, 0, 2],[0, 0, 7, 0, 9, 14, 0, 0, 0],[0, 0, 0, 9, 0, 10, 0, 0, 0],[0, 0, 4, 14, 10, 0, 2, 0, 0],[0, 0, 0, 0, 0, 2, 0, 1, 6],[8, 11, 0, 0, 0, 0, 1, 0, 7],[0, 0, 2, 0, 0, 0, 6, 7, 0]]
src = 0print(f'(顶点, 以顶点 {src} 为源的最短路径长度, 最短路径)')
print('-' * 40)g.dijkstra(src)print('-' * 40)
(顶点, 以顶点 0 为源的最短路径长度, 最短路径)
----------------------------------------
(0, 0, [0])
(1, 4, [0, 1])
(2, 12, [0, 1, 2])
(3, 19, [0, 1, 2, 3])
(4, 21, [0, 7, 6, 5, 4])
(5, 11, [0, 7, 6, 5])
(6, 9, [0, 7, 6])
(7, 8, [0, 7])
(8, 14, [0, 1, 2, 8])
----------------------------------------

相关文章:

【贪心】单源最短路径Python实现

文章目录 [toc]问题描述Dijkstra算法Dijkstra算法的正确性贪心选择性质最优子结构性质 Dijkstra算法应用示例时间复杂性Python实现 个人主页&#xff1a;丷从心 系列专栏&#xff1a;贪心算法 问题描述 给定一个带权有向图 G ( V , E ) G (V , E) G(V,E)&#xff0c;其中每…...

Spark Shell的简单使用

简介 Spark shell是一个特别适合快速开发Spark原型程序的工具&#xff0c;可以帮助我们熟悉Scala语言。即使你对Scala不熟悉&#xff0c;仍然可以使用这个工具。Spark shell使得用户可以和Spark集群交互&#xff0c;提交查询&#xff0c;这便于调试&#xff0c;也便于初学者使用…...

Springsecurty【2】认证连接MySQL

1.前期准备 基于Spring Initializr创建SpringBoot项目&#xff08;基于SpringBoot 2.7.12版本&#xff09;&#xff0c;实现与MyBatisPlus的项目整合。分别导入&#xff1a;CodeGenerator和MyBatisPlusConfig。 CodeGenerator&#xff1a;用于MybatisPlus代码生成&#xff1b;…...

.Net 访问电子邮箱-LumiSoft.Net,好用

序言&#xff1a; 网上找了很多关于.Net如何访问电子邮箱的方法&#xff0c;但是大多数都达不到想要的需求&#xff0c;只有一些 收发邮件。因此 花了很大功夫去看 LumiSoft.Net.dll 的源码&#xff0c;总算做出自己想要的结果了&#xff0c;果然学习诗人进步。 介绍&#xff…...

谷粒商城-商品服务-新增商品功能开发(商品图片无法展示问题没有解决)

在网关配置路由 - id: member_routeuri: lb://gulimemberpredicates:- Path/api/gulimember/**filters:- RewritePath/api/(?<segment>.*),/$\{segment}并将所有逆向生成的工程调式出来 获取分类关联的品牌 例如&#xff1a;手机&#xff08;分类&#xff09;-> 品…...

Open3D 点云数据处理基础(Python版)

Open3D 点云数据处理基础&#xff08;Python版&#xff09; 文章目录 1 概述 2 安装 2.1 PyCharm 与 Python 安装 2.3 Anaconda 安装 2.4 Open3D 0.13.0 安装 2.5 新建一个 Python 项目 3 点云读写 4 点云可视化 2.1 可视化单个点云 2.2 同一窗口可视化多个点云 2.3…...

使用vue-qr,报错in ./node_modules/vue-qr/dist/vue-qr.js

找到node_modules—>vue-qr/dist/vue-qr.js文件&#xff0c;搜…e,将…去掉&#xff0c;然后重新运行项目。...

百川2大模型微调问题解决

之前用https://github.com/FlagAlpha/Llama2-Chinese微调过几个模型&#xff0c;总体来说llama2的生态还是比较好的&#xff0c;过程很顺利。微调百川2就没那么顺利了&#xff0c;所以简单做个记录 1. 数据准备&#xff0c;我的数据是单轮对话&#xff0c;之前微调llama2已经按…...

MySQL的事务-原子性

MySQL的事务处理具有ACID的特性&#xff0c;即原子性&#xff08;Atomicity)、一致性&#xff08;Consistency&#xff09;、隔离性&#xff08;Isolation&#xff09;和持久性&#xff08;Durability&#xff09;。 1. 原子性指的是事务中所有操作都是原子性的&#xff0c;要…...

D3839|完全背包

完全背包&#xff1a; 首先01背包的滚动数组中的解法是内嵌的循环是从大到小遍历&#xff0c;为了保证每个物品仅被添加一次。 for(int i 0; i < weight.size(); i) { // 遍历物品for(int j bagWeight; j > weight[i]; j--) { // 遍历背包容量dp[j] max(dp[j], dp[j…...

Java之Synchronized与锁升级

Synchronized与锁升级 一、概述 在多线程并发编程中 synchronized 一直是元老级角色&#xff0c;很多人都会称呼它为重量级锁。但是&#xff0c;随着 Java SE 1.6 对 synchronized 进行了各种优化之后&#xff0c;有些情况下它就并不那么重了。 本文详细介绍 Java SE 1.6 中为…...

kitex出现:open conf/test/conf.yaml: no such file or directory

open conf/test/conf.yaml: no such file or directory https://github.com/cloudwego/cwgo/issues/120 https://github.com/cloudwego/cwgo/issues/29 在使用Kitex生成的代码中&#xff0c;单元测试时回报错&#xff0c;如标题所示。出现该错的原因是&#xff0c;biz/servic…...

sql server多表查询

查询目标 现在有学生表和学生选课信息表&#xff0c;stu和stuSelect&#xff0c;stu中包含学生用户名、名字&#xff0c;stuSelect表中包含学生用户名&#xff0c;所选课程名 学生表&#xff1a; nameusername李明Li Ming李华Li Hua 学生选课表&#xff1a; usernameCourse…...

如何利用PPT绘图并导出清晰图片

在写论文的过程中&#xff0c;免不了需要绘图&#xff0c;但是visio等软件绘图没有在ppt上绘图比较熟练&#xff0c;尤其流程图结构图. 但是ppt导出的图片也不够清晰&#xff0c;默认分辨率是96dpi&#xff0c;而杂志投稿一般要求至300dpi。解决办法如下&#xff1a; 1.打开注…...

1.倒排索引 2.逻辑斯提回归算法

1.倒排索引 https://help.aliyun.com/zh/open-search/retrieval-engine-edition/introduction-to-inverted-indexes 倒排索引&#xff08;Inverted Index&#xff09;是一种数据结构&#xff0c;用于快速查找包含某个特定词或词语的文档。它主要用于全文搜索引擎等应用&#…...

Kafka消费者组

消费者总体工作流程 Consumer Group&#xff08;CG&#xff09;&#xff1a;消费者组&#xff0c;由多个consumer组成。形成一个消费者组的条件&#xff0c;是所有消费者的groupid相同。 • 消费者组内每个消费者负责消费不同分区的数据&#xff0c;一个分区只能由一个组内消费…...

四. 基于环视Camera的BEV感知算法-BEVDepth

目录 前言0. 简述1. 算法动机&开创性思路2. 主体结构3. 损失函数4. 性能对比总结下载链接参考 前言 自动驾驶之心推出的《国内首个BVE感知全栈系列学习教程》&#xff0c;链接。记录下个人学习笔记&#xff0c;仅供自己参考 本次课程我们来学习下课程第四章——基于环视Cam…...

CentOS系统环境搭建(二十五)——使用docker compose安装mysql

centos系统环境搭建专栏&#x1f517;点击跳转 文章目录 使用docker compose安装mysqlMySQL81.新建文件夹2.创建docker-compose.yaml3.创建my.cnf4.mysql容器的启动和关闭 MySQL5.71.新建文件夹2.创建docker-compose.yaml3.创建my.cnf4.mysql容器的启动和关闭 使用docker comp…...

协作机器人(Collaborative-Robot)安全碰撞的速度与接触力

协作机器人&#xff08;Collaborative-Robot&#xff09;的安全碰撞速度和接触力是一个非常重要的安全指标。在设计和使用协作机器人时&#xff0c;必须确保其与人类或其他物体的碰撞不会对人员造成伤害。 对于协作机器人的安全碰撞速度&#xff0c;一般会设定一个上限值&…...

第11章 GUI Page400~402 步骤二 画直线

运行效果&#xff1a; 源代码&#xff1a; /**************************************************************** Name: wxMyPainterApp.h* Purpose: Defines Application Class* Author: yanzhenxi (3065598272qq.com)* Created: 2023-12-21* Copyright: yanzhen…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...