当前位置: 首页 > news >正文

安陆网站建设/种子搜索器

安陆网站建设,种子搜索器,制作网站建设,建设向58同城的网站VOC数据图像和标签一起进行Resize 参加检测比赛的时候,很多时候工业原始数据尺度都比较大,如果对数据不提前进行处理,会导致数据在加载进内存时花费大量的时间,所以在执行训练程序之前需要将图像提前进行预处理。对于目标检测的数…

VOC数据图像和标签一起进行Resize

参加检测比赛的时候,很多时候工业原始数据尺度都比较大,如果对数据不提前进行处理,会导致数据在加载进内存时花费大量的时间,所以在执行训练程序之前需要将图像提前进行预处理。对于目标检测的数据,不只是将原始数据进行resize,边界框的坐标也要跟随一起进行resize。

如下,是今天测试需要用到的原始图像和他的标签。

2007_002266

<annotation><folder>VOC2012</folder><filename>2007_002266.jpg</filename><source><database>The VOC2007 Database</database><annotation>PASCAL VOC2007</annotation><image>flickr</image></source><size><width>500</width><height>373</height><depth>3</depth></size><segmented>1</segmented><object><name>aeroplane</name><pose>Rear</pose><truncated>1</truncated><difficult>0</difficult><bndbox><xmin>231</xmin><ymin>251</ymin><xmax>458</xmax><ymax>346</ymax></bndbox></object><object><name>aeroplane</name><pose>Left</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>5</xmin><ymin>118</ymin><xmax>499</xmax><ymax>258</ymax></bndbox></object>
</annotation>

等比例缩放之后的结果如下。

result

单张图像resize

单张进行预处理的脚本如下。

# -*- coding: utf-8 -*-
# @File  : PreProcessing.py
# @Author: 肆十二
# @Date  : 2023/12/24
# @Desc  : 同步缩放图片(等比例缩放无失真)和xml文件标注的anchor size
import glob
import xml.dom.minidom
import cv2img = cv2.imread("./demo.jpg")
height, width = img.shape[:2]# 定义缩放信息 以等比例缩放到416为例
scale=416/height
height=416
width=int(width*scale)dom = xml.dom.minidom.parse("./demo.xml")
root = dom.documentElement# 读取标注目标框
objects = root.getElementsByTagName("bndbox")for object in objects:xmin=object.getElementsByTagName("xmin")xmin_data=int(float(xmin[0].firstChild.data))# xmin[0].firstChild.data =str(int(xmin1 * x))ymin =object.getElementsByTagName("ymin")ymin_data = int(float(ymin[0].firstChild.data))xmax=object.getElementsByTagName("xmax")xmax_data = int(float(xmax[0].firstChild.data))ymax=object.getElementsByTagName("ymax")ymax_data = int(float(ymax[0].firstChild.data))# 更新xmlwidth_xml=root.getElementsByTagName("width")width_xml[0].firstChild.data=widthheight_xml = root.getElementsByTagName("height")height_xml[0].firstChild.data = heightxmin[0].firstChild.data = int(xmin_data*scale)ymin[0].firstChild.data = int(ymin_data*scale)xmax[0].firstChild.data = int(xmax_data*scale)ymax[0].firstChild.data = int(ymax_data*scale)# 另存更新后的文件with open('demo2.xml', 'w') as f:dom.writexml(f, addindent='  ', encoding='utf-8')# 测试缩放效果img = cv2.resize(img, (width, height))# xmin, ymin, xmax, ymax分别为xml读取的坐标信息left_top = (int(xmin_data*scale), int(ymin_data*scale))right_down= (int(xmax_data*scale), int(ymax_data*scale))cv2.rectangle(img, left_top, right_down, (255, 0, 0), 1)cv2.imwrite("result.jpg",img)

批量resize

下面是批量对VOC格式数据集进行预处理的脚本,处理之后划分为37的比例就可以进行模型训练了。

import glob
import xml.dom.minidom
import cv2
from PIL import Image
import matplotlib.pyplot as plt
import os# 定义待批量裁剪图像的路径地址
IMAGE_INPUT_PATH = r'D:\code\data\JPEGImages'
XML_INPUT_PATH = r'D:\code\data\Annotations_new'
# 定义裁剪后的图像存放地址
IMAGE_OUTPUT_PATH = r'D:\code\data\JPEGImages_out'
XML_OUTPUT_PATH = r'D:\code\data\Annotations_out'
imglist = os.listdir(IMAGE_INPUT_PATH)
xmllist = os.listdir(XML_INPUT_PATH)for i in range(len(imglist)):# 每个图像全路径,这里有改进的空间image_input_fullname = IMAGE_INPUT_PATH + '/' + imglist[i]# xml_input_fullname = XML_INPUT_PATH + '/' + xmllist[i] xml_input_fullname = XML_INPUT_PATH + '/' + imglist[i].replace("jpg", "xml")image_output_fullname = IMAGE_OUTPUT_PATH + '/' + imglist[i]xml_output_fullname = XML_OUTPUT_PATH + '/' + xmllist[i]img = cv2.imread(image_input_fullname)height, width = img.shape[:2]# 定义缩放信息 以等比例缩放到416为例scale=400/heightheight=400width=int(width*scale)dom = xml.dom.minidom.parse(xml_input_fullname)root = dom.documentElement# 读取标注目标框objects = root.getElementsByTagName("bndbox")for object in objects:xmin=object.getElementsByTagName("xmin")xmin_data=int(float(xmin[0].firstChild.data))# xmin[0].firstChild.data =str(int(xmin1 * x))ymin =object.getElementsByTagName("ymin")ymin_data = int(float(ymin[0].firstChild.data))xmax=object.getElementsByTagName("xmax")xmax_data = int(float(xmax[0].firstChild.data))ymax=object.getElementsByTagName("ymax")ymax_data = int(float(ymax[0].firstChild.data))# 更新xmlwidth_xml=root.getElementsByTagName("width")width_xml[0].firstChild.data=widthheight_xml = root.getElementsByTagName("height")height_xml[0].firstChild.data = heightxmin[0].firstChild.data = int(xmin_data*scale)ymin[0].firstChild.data = int(ymin_data*scale)xmax[0].firstChild.data = int(xmax_data*scale)ymax[0].firstChild.data = int(ymax_data*scale)# 另存更新后的文件with open(xml_output_fullname, 'w') as f:dom.writexml(f, addindent='  ', encoding='utf-8')# 测试缩放效果img = cv2.resize(img, (width, height))'''# xmin, ymin, xmax, ymax分别为xml读取的坐标信息left_top = (int(xmin_data*scale), int(ymin_data*scale))right_down= (int(xmax_data*scale), int(ymax_data*scale))cv2.rectangle(img, left_top, right_down, (255, 0, 0), 1)'''cv2.imwrite(image_output_fullname,img)

总结

当前的目标检测框架中,模型方面基本都已经固定下来,YOLO或者RCNN,靠模型很难取得大规模的增点,所以这个时候从图像的角度进行入手显得非常重要,这里推荐大家使用一个专业的切图工具。

链接如下:GitHub - obss/sahi: Framework agnostic sliced/tiled inference + interactive ui + error analysis plots

碎碎念:数据预处理真的很关键啊,好的数据预处理真的可以节省大量的时间。

相关文章:

DataProcess-VOC数据图像和标签一起进行Resize

VOC数据图像和标签一起进行Resize 参加检测比赛的时候&#xff0c;很多时候工业原始数据尺度都比较大&#xff0c;如果对数据不提前进行处理&#xff0c;会导致数据在加载进内存时花费大量的时间&#xff0c;所以在执行训练程序之前需要将图像提前进行预处理。对于目标检测的数…...

MultiValueMap

MultiValueMap是Spring框架中提供的一个接口&#xff0c;它继承了Map接口&#xff0c;用于存储键值对&#xff0c;但与普通的Map不同的是&#xff0c;MultiValueMap中一个键可以对应多个值&#xff0c;因此它也可以被称为“多值Map”。 MultiValueMap的使用场景一般是在需要存…...

山西电力市场日前价格预测【2023-12-25】

日前价格预测 预测说明&#xff1a; 如上图所示&#xff0c;预测明日&#xff08;2023-12-25&#xff09;山西电力市场全天平均日前电价为469.89元/MWh。其中&#xff0c;最高日前电价为1048.40元/MWh&#xff0c;预计出现在08:30。最低日前电价为252.77元/MWh&#xff0c;预计…...

【华为OD机试真题2023CD卷 JAVAJS】5G网络建设

华为OD2023(C&D卷)机试题库全覆盖,刷题指南点这里 5G网络建设 时间限制:4s 空间限制:256MB 限定语言:不限 题目描述: 现需要在某城市进行5G网络建设,已经选取N个地点设置5G基站,编号固定为1到N,接下来需要各个基站之间使用光纤进行连接以确保基站能互联互通,不同…...

OSI 七层参考模型及TCP/IP 四层模型

OSI 七层参考模型 七层模型&#xff0c;亦称 OSI &#xff08; Open System Interconnection &#xff09;参考模型&#xff0c;即开放式系统互联。参考模型是国际标准化组织&#xff08;ISO &#xff09;制定的一个用于计算机或通信系统间互联的标准体系&#xff0c;一般称为…...

【面向对象】对比JavaScript、Go、Ada、Python、C++、Java、PHP的访问限制。

在不同编程语言中&#xff0c;控制成员&#xff08;变量、方法、类等&#xff09;可见性的机制不尽相同。以下是对比JavaScript、Go、Ada、Python、C、Java、PHP所使用的访问限制关键字和约定&#xff1a; 一、JavaScript ### JavaScript访问限制 早期的JavaScript并没有类似…...

力扣(leetcode)第26题删除有序数组中的重复项(Python)

26.删除有序数组的重复项 题目链接&#xff1a;26.删除有序数组的重复项 给你一个非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 …...

【内存泄漏】内存泄漏及常见的内存泄漏检测工具介绍

内存泄漏介绍 什么是内存泄漏 内存泄漏是指程序分配了一块内存&#xff08;通常是动态分配的堆内存&#xff09;&#xff0c;但在不再需要这块内存的情况下未将其释放。内存泄漏会导致程序浪费系统内存资源&#xff0c;持续的内存泄漏还导致系统内存的逐渐耗尽&#xff0c;最…...

FPGA-ZYNQ-7000 SoC在嵌入式系统中的优势

FPGA-ZYNQ-7000 SoC在嵌入式系统中的优势 本章节主要参考书籍《Xilinx Zynq-7000 嵌入式系统设计与实现 基于ARM Cortex-A9双核处理器和Vivado的设计方法 (何宾&#xff0c;张艳辉编著&#xff09;》 本章节主要讲述FPGA-ZYNQ-7000 SoC在嵌入式系统中的优势&#xff0c;学习笔…...

如何在Vue3中实现无缝热重载:提升你的开发效率

Vue3中的热重载&#xff08;Hot Module Replacement&#xff0c;简称HMR&#xff09;是一种开发时的功能&#xff0c;它允许开发者在不刷新整个页面的情况下&#xff0c;实时替换、添加或删除模块。这意味着当你对Vue组件进行修改并保存时&#xff0c;这些更改会立即反映在浏览…...

盒子 Box

UVa1587 思路&#xff1a; 1.输入每个面的长宽并将每个面较长的一边放在前面 2.判断是否存在三对面分别相等 3.判断是否存在三组四棱相等 #include <stdio.h> #include <stdlib.h> #define maxn 100int cmp(const void* e1, const void* e2) {return (int)(*(d…...

uni-app附件下载预览 并解决打开附件时黑屏

// 预览附件perviewFile(file) {console.log(点击附件, file)var strfile.previewUrlvar filTypestr.split(.)console.log(filType,filType)uni.downloadFile({url: success: function(res) {console.log(打开文档成功, res);if (res.statusCode 200) {uni.saveFile({tempFile…...

卸载了Visual Studio后,在vscode中执行npm i或npm i --force时报错,该怎么解决?

卸载了Visual Studio后&#xff0c;在vscode中执行npm i或npm i --force时报错,该怎么解决&#xff1f; 报错内容&#xff1a;原因解决办法 报错内容&#xff1a; npm ERR! code 1 npm ERR! path E:\VScode\codeDate\yugan\node_modules\node-sass npm ERR! command failed np…...

渗透测试 | 信息收集常用方法合集

目录 一、关于域名 1.子域名收集 a.搜索引擎查找 b.在线查询 c.工具 d.SSL/TLS证书查询 2.端口型站点收集 3.目录文件扫描 a.目录扫描工具 b.github搜索 c.google搜索 d.在线网站 e.文件接口工具 4.旁站和C段 a.旁站查询 b.C段查询 5.网站技术架构信息 a.基础…...

使用 ElementUI 组件构建无边框 Window 桌面应用(WinForm/WPF)

生活不可能像你想象得那么好,但也不会像你想象得那么糟。 我觉得人的脆弱和坚强都超乎自己的想象。 有时,我可能脆弱得一句话就泪流满面;有时,也发现自己咬着牙走了很长的路。 ——莫泊桑 《一生》 一、技术栈 Vite + Vue3 + TS + ElementUI(plus) + .NET Framework 4.7.2…...

JavaScript中数组的方法和函数作用域问题

1 -函数作用域问题-: 函数的外层作用域&#xff0c;在函数创建时就已确定&#xff0c;和函数的调用位置无关 var name 嘿嘿;// 函数的外层作用域&#xff0c;在函数创建时就已确定&#xff0c;和函数的调用位置无关// JS中的作用域被称为 词法作用域function fn() {console.…...

nodejs设置x-xss-protection解决xss问题

在Node.js中设置X-XSS-Protection可以通过使用helmet库来完成。 首先&#xff0c;确保已经安装了helmet库。如果没有安装&#xff0c;可以运行以下命令进行安装&#xff1a; npm install helmet --save 然后&#xff0c;在你的Node.js应用程序中引入并配置helmet库&#xff…...

C/C++不同整数类型的区别

在C/C中涉及的整数相关的类型大致有如下几种&#xff1a; char、unsigned charshort、unsigned shortint、unsigned intlong、unsigned longlong long、unsigned long longint8_t、uint8_tint32_t、uint32_tint64_t、uint64_tDWORDDWORD32、DWORD64size_t、ssize_tSIZE_T、SSI…...

如何理解JDK、JRE、JVM区别与联系

摘要&#xff1a;JDK是 Java 语言的软件开发工具包(SDK)。在JDK的安装目录下有一个jre目录&#xff0c;里面有两个文件夹bin和lib&#xff0c;在这里可以认为bin里的就是jvm&#xff0c;lib中则是jvm工作所需要的类库&#xff0c;而jvm和 lib合起来就称为jre。 一、JDK JDK(Ja…...

用友GRP-U8 SmartUpload01 文件上传漏洞

漏洞描述 用友GRP-U8行政事业内控管理软件是一款专门针对行政事业单位开发的内部控制管理系统&#xff0c;旨在提高内部控制的效率和准确性。该软件/u8qx/SmartUpload01.jsp接口存在文件上传漏洞&#xff0c;未经授权的攻击者可通过此漏洞上传恶意后门文件&#xff0c;从而获取…...

react 路由v6

这里是区别&#xff1a;V5 vs V6 这里是官网&#xff1a;可以查看更多高级属性 一、基本使用&#xff1a; 1、配置文件 src/routes/index import React from "react";const Home React.lazy(() > import("../Pages/Home")); const About React.laz…...

rpc【通义】rpc原理【gpt】

一 rpc RPC&#xff08;Remote Procedure Call&#xff0c;远程过程调用&#xff09;是一种编程技术&#xff0c;它允许在分布式系统中的一个程序像调用本地函数一样调用另一个程序&#xff08;位于不同的机器或进程中&#xff09;的函数或方法。RPC的主要目标是隐藏网络通信的…...

Leetcode 2973. Find Number of Coins to Place in Tree Nodes

Leetcode 2973. Find Number of Coins to Place in Tree Nodes 1. 解题思路2. 代码实现 题目链接&#xff1a;2973. Find Number of Coins to Place in Tree Nodes 1. 解题思路 这道题思路上其实挺简单的&#xff0c;就是一个遍历的思路&#xff0c;找到每一个点对应的子树当…...

如何调动销售人员使用CRM的积极性?

CRM系统在销售人员眼中是流程监管工具也是单调枯燥的操作空间&#xff0c;如何让销售爱上CRM系统&#xff1f;1.让CRM简化销售工作&#xff1b;2.智能提醒销售各项事务&#xff1b;3.让CRM界面更加丰富多彩&#xff0c;通过这些方法帮助销售经理轻松管理团队&#xff0c;销售对…...

数值分析期末复习

第一章 科学计算 误差 解题步骤 x : 真实值 x:真实值 x:真实值 x ∗ : 近似值 x^*:近似值 x∗:近似值 先求绝对误差 e ∗ e^* e∗: x − x ∗ x - x^* x−x∗ 绝对误差限是 ∣ x − x ∗ ∣ ≤ ε |x - x^{*}| \le \varepsilon ∣x−x∗∣≤ε 求相对误差限: ∣ x − x ∗…...

k8s的探针

一、探针原理 分布式系统和微服务体系结构的挑战之一是自动检测不正常的应用程序&#xff0c;并将请求&#xff08;request&#xff09;重新路由到其他可用系统&#xff0c;恢复损坏的组件。健康检查是应对该挑战的一种可靠方法。使用 Kubernetes&#xff0c;可以通过探针配置运…...

Python 爬虫之下载视频(五)

爬取第三方网站视频 文章目录 爬取第三方网站视频前言一、基本情况二、基本思路三、代码编写四、注意事项&#xff08;ffmpeg&#xff09;总结 前言 国内主流的视频平台有点难。。。就暂且记录一些三方视频平台的爬取吧。比如下面这个&#xff1a; 一、基本情况 这次爬取的方…...

Gradle下载地址

Gradle下载地址 Gradle是一个基于JVM的构建工具&#xff0c;是一款通用灵活的构建工具&#xff0c;Gradle也是第一个构建集成工具&#xff0c;与ant、maven、ivy有良好的相容相关性。支持maven&#xff0c; Ivy仓库&#xff0c;支持传递性依赖管理&#xff0c;而不需要远程仓库…...

顺序表的实现(头插、尾插、头删、尾删、查找、删除、插入)

目录 一. 数据结构相关概念​ 二、线性表 三、顺序表概念及结构 3.1顺序表一般可以分为&#xff1a; 3.2 接口实现&#xff1a; 四、基本操作实现 4.1顺序表初始化 4.2检查空间&#xff0c;如果满了&#xff0c;进行增容​编辑 4.3顺序表打印 4.4顺序表销毁 4.5顺…...

VMware虚拟机安装Ubuntu系统教程

所使用的文件如下&#xff1a; VMware Workstation 17 Pro ubuntu-22.04.3-desktop-amd64.iso 一、ubuntu 命名规则及各版本一览表 1.ubuntu 命名规则&#xff1a; 例如&#xff1a;ubuntu 16.04 LTS 是长期维护版本&#xff1b;ubuntu 17.04 是新特性版本 前两位数字为发…...