当前位置: 首页 > news >正文

【数据结构和算法】找到最高海拔

其他系列文章导航

Java基础合集
数据结构与算法合集

设计模式合集

多线程合集

分布式合集

ES合集


文章目录

其他系列文章导航

文章目录

前言

一、题目描述

二、题解

2.1 前缀和的解题模板

2.1.1 最长递增子序列长度

2.1.2 寻找数组中第 k 大的元素

2.1.3 最长公共子序列长度

2.1.4 寻找数组中第 k 小的元素

2.2 方法一:前缀和(差分数组)

三、代码

3.2 方法一:前缀和(差分数组)

四、复杂度分析

4.2 方法一:前缀和(差分数组)


前言

这是力扣的 1732 题,难度为简单,解题方案有很多种,本文讲解我认为最奇妙的一种。

这是一道非常经典的前缀和问题,虽然看似简单,但它却能让你深入理解前缀和的特点。


一、题目描述

有一个自行车手打算进行一场公路骑行,这条路线总共由 n + 1 个不同海拔的点组成。自行车手从海拔为 0 的点 0 开始骑行。

给你一个长度为 n 的整数数组 gain ,其中 gain[i] 是点 i 和点 i + 1 的 净海拔高度差0 <= i < n)。请你返回 最高点的海拔 。

示例 1:

输入:gain = [-5,1,5,0,-7]
输出:1
解释:海拔高度依次为 [0,-5,-4,1,1,-6] 。最高海拔为 1 。

示例 2:

输入:gain = [-4,-3,-2,-1,4,3,2]
输出:0
解释:海拔高度依次为 [0,-4,-7,-9,-10,-6,-3,-1] 。最高海拔为 0 。

提示:

  • n == gain.length
  • 1 <= n <= 100
  • -100 <= gain[i] <= 100

二、题解

2.1 前缀和的解题模板

前缀和算法是一种在处理数组或链表问题时常用的技巧,它可以有效地减少重复计算,提高算法的效率。下面是一些常见的使用前缀和算法的题目以及解题思路:

2.1.1 最长递增子序列长度

题目描述:给定一个无序数组,求最长递增子序列的长度。

解题思路:可以使用前缀和和单调栈来解决这个问题。首先,遍历数组,计算出前缀和。然后,使用单调栈记录当前递增子序列的起始位置。遍历数组时,如果当前元素大于前缀和,说明可以扩展当前递增子序列,将当前位置入栈。如果当前元素小于等于前缀和,说明当前递增子序列已经结束,弹出栈顶元素。最后,栈中剩余的元素即为最长递增子序列的起始位置,计算长度即可。

2.1.2 寻找数组中第 k 大的元素

题目描述:给定一个无序数组和一个整数k,找到数组中第k大的元素。

解题思路:可以使用前缀和和快速选择算法来解决这个问题。首先,计算出数组的前缀和。然后,使用快速选择算法在数组中找到第k小的元素。具体实现中,每次选择一个枢轴元素,将数组分成两部分,小于枢轴的元素和大于枢轴的元素。如果枢轴左边的元素个数小于k,则在左边的子数组中继续查找;如果枢轴左边的元素个数大于等于k,则在右边的子数组中继续查找。最后,当找到第k小的元素时,返回该元素即可。

2.1.3 最长公共子序列长度

题目描述:给定两个字符串,求最长公共子序列的长度。

解题思路:可以使用动态规划算法来解决这个问题。如果字符串长度分别为m和n,则可以定义一个二维数组dp[m+1][n+1],其中dp[i][j]表示字符串s1的前i个字符和字符串s2的前j个字符的最长公共子序列长度。根据动态规划的思想,状态转移方程为dp[i][j] = max(dp[i-1][j-1], dp[i-1][j], dp[i][j-1])。如果s1[i-1]等于s2[j-1],则dp[i][j] = dp[i-1][j-1] + 1;否则dp[i][j]取其他两种情况中的较大值。最终结果为dp[m][n]。

2.1.4 寻找数组中第 k 小的元素

题目描述:给定一个无序数组和一个整数k,找到数组中第k小的元素。

解题思路:可以使用前缀和和快速选择算法来解决这个问题。具体实现与寻找第k大元素类似,只不过最后返回的是第k小的元素而非第k大的元素。

2.2 方法一:前缀和(差分数组)

解这个问题需要注意以下几点:

  1. 理解题意:首先,要明确题目的要求,理解自行车手的骑行路线和海拔变化的关系。根据题目描述,自行车手从海拔为0的点开始骑行,通过一系列的海拔变化,最终要找到最高点的海拔。
  2. 分析海拔变化:根据给定的gain数组,可以分析出自行车手的海拔变化。gain[i]表示点i和点i+1之间的净海拔高度差。通过累加这些高度差,可以计算出经过每个点后的总海拔变化。
  3. 确定最高点的海拔:在计算出总的海拔变化后,需要找到最高点的海拔。这可以通过比较累加海拔和初始海拔的大小来实现。最高点的海拔即为累加海拔和初始海拔中的较大值。
  4. 注意数组边界条件:在处理gain数组时,需要注意数组的边界条件。例如,gain[0]表示起点和终点之间的海拔高度差,而gain[n-1]表示倒数第二个点和终点之间的海拔高度差。
  5. 代码实现:最后,根据上述分析,可以使用Python等编程语言实现相应的算法。在实现过程中,需要注意代码的简洁性和可读性,同时也要注意处理可能的异常情况。

思路与算法:

我们假设每个点的海拔为 hi ,由于 gain[i] 表示第 i 个点和第 i+1 个点的海拔差,因此

gain[i] = h(i+1) − hi,那么: 

可以发现,每个点的海拔都可以通过前缀和的方式计算出来。因此,我们只需要遍历一遍数组,求出前缀和的最大值,即为最高点的海拔。

实际上题目中的 gain 数组是一个差分数组,对差分数组求前缀和即可得到原海拔数组。然后求出原海拔数组的最大值即可。


三、代码

3.2 方法一:前缀和(差分数组)

Java版本:

class Solution {public int largestAltitude(int[] gain) {int high = 0, max = 0;for (int h : gain) {high += h;max = Math.max(max, high);}return max;}
}

C++版本:

class Solution {
public:int largestAltitude(std::vector<int>& gain) {int high = 0, max = 0;for (int h : gain) {high += h;max = std::max(max, high);}return max;}
};

Python版本:

class Solution:def largestAltitude(self, gain: List[int]) -> int:high = 0max_altitude = 0for h in gain:high += hmax_altitude = max(max_altitude, high)return max_altitude

Go版本:

func largestAltitude(gain []int) int {high, max := 0, 0for _, h := range gain {high += hif high > max {max = high}}return max
}func main() {gain := []int{-5, 1, 5, 0, -7}result := largestAltitude(gain)fmt.Println(result)
}

四、复杂度分析

4.2 方法一:前缀和(差分数组)

  • 时间复杂度: O(n),其中 n 为数组 gain 的长度。
  • 空间复杂度: O(1)。

相关文章:

【数据结构和算法】找到最高海拔

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 前缀和的解题模板 2.1.1 最长递增子序列长度 2.1.2 寻找数组中第 k 大的元素 2.1.3 最长公共子序列…...

redis相关问题

1、概述&#xff1a; 1. 非关系型数据库 2. 是分布式缓存数据库 3. 使用 key -value结构存储 2、作用&#xff1a; 用作缓存降低数据库压力&#xff0c;提高性能&#xff1b;可以用作消息队列&#xff08;削峰、解耦、异步调用&#xff09; 3、基础语法&#xff1a; 基础命令…...

第41节: Vue3 watch函数

在UniApp中使用Vue3框架时&#xff0c;你可以使用watch函数来观察和响应Vue实例上的数据变化。以下是一个示例&#xff0c;演示了如何在UniApp中使用Vue3框架使用watch函数&#xff1a; <template> <view> <input v-model"message" type"text…...

Centos7:升级gcc、g++到版本5.2.0

背景 Centos7.9版本默认的g版本是4.8.5&#xff0c;在实践golang项目中&#xff0c;用到C14&#xff0c;编译时会报错&#xff1a;gcc: error: unrecognized command line option ‘-stdc14’ 因此&#xff0c;gcc需要升级到更高版本&#xff0c;我这里使用源码编译形式升级到g…...

Pytohn data mode plt

文章目录 文件的读写创建.csv类型的文件&#xff0c;并读取文件创建.xlsx文件 使用Python做图生成数据集切片取值操作修改张量中指定位置的数据 知识点torch.arange(x)torch.tensor(2)Atorch.randn(36).reshape(6,6)shapenumel()reshape(x,y,z)torch.zeros(3,3,4)torch.ones(2,…...

内网离线搭建之----kafka集群

1.系统版本 虚拟机192.168.9.184 虚拟机192.168.9.185 虚拟机192.168.9.186系统 centos7 7.6.1810 2.依赖下载 ps&#xff1a;置顶资源里已经下载好了&#xff0c;直接用&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;…...

5.1 显示窗口的内容(一)

一&#xff0c;如何显示窗口的内容&#xff1f; 显示器用于在物理硬件&#xff08;如计算机显示器或触摸屏显示器&#xff09;上显示窗口的内容。 屏幕API提供的功能允许我们创建同时写入多个窗口和显示的应用程序。屏幕支持多个显示器&#xff0c;但创建和管理使用多个显示器…...

基于包围盒算法的三维点云数据压缩和曲面重建matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 包围盒构建 4.2 点云压缩 4.3 曲面重建 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ...........................................…...

关于Python里xlwings库对Excel表格的操作(十八)

这篇小笔记主要记录如何【设置单元格数据的对齐方式】。前面的小笔记已整理成目录&#xff0c;可点链接去目录寻找所需更方便。 【目录部分内容如下】【点击此处可进入目录】 &#xff08;1&#xff09;如何安装导入xlwings库&#xff1b; &#xff08;2&#xff09;如何在Wps下…...

VScode远程连接服务器,Pycharm专业版下载及远程连接(深度学习远程篇)

Visual Code、PyCharm专业版&#xff0c;本地和远程交互。 远程连接需要用到SSH协议的技术&#xff0c;常用的代码编辑器vscode 和 pycharm都有此类功能。社区版的pycharm是免费的&#xff0c;但是社区版不支持ssh连接服务器&#xff0c;只有专业版才可以&#xff0c;需要破解…...

Vue2和Vue3组件间通信方式汇总(3)------$bus

组件间通信方式是前端必不可少的知识点&#xff0c;前端开发经常会遇到组件间通信的情况&#xff0c;而且也是前端开发面试常问的知识点之一。接下来开始组件间通信方式第三弹------$bus,并讲讲分别在Vue2、Vue3中的表现。 Vue2Vue3组件间通信方式汇总&#xff08;1&#xff09…...

PyTorch加载数据以及Tensorboard的使用

一、PyTorch加载数据初认识 Dataset:提供一种方式去获取数据及其label 如何获取每一个数据及其label 总共有多少的数据 Dataloader:为后面的网络提供不同的数据形式 数据集 在编译器中导入Dataset from torch.utils.data import Dataset 可以在jupyter中查看Dataset官方文档&…...

TensorFlow是什么

TensorFlow是什么 Tensorflow是一个Google开发的第二代机器学习系统&#xff0c;克服了第一代系统DistBelief仅能开发神经网络算法、难以配置、依赖Google内部硬件等局限性&#xff0c;应用更加广泛&#xff0c;并且提高了灵活性和可移植性&#xff0c;速度和扩展性也有了大幅…...

docker-compose 安装Sonar并集成gitlab

文章目录 1. 前置条件2. 编写docker-compose-sonar.yml文件3. 集成 gitlab4. Sonar Login with GitLab 1. 前置条件 安装docker-compose 安装docker 创建容器运行的特有网络 创建挂载目录 2. 编写docker-compose-sonar.yml文件 version: "3" services:sonar-postgre…...

支付平台在选择服务器租用时要注意什么?

如果要建设一个支付平台的话要进行服务器租用&#xff0c;一旦涉及到钱的方面就必须要顾虑到多方面&#xff0c;这样才能保证安全性&#xff0c;今天小编就给大家讲一讲要注意什么呢&#xff1f; 1、带宽:带宽是业务稳定性的直接因素&#xff0c;只有带宽充足&#xff0c;这样…...

IDEA2018升级2023,lombok插件不兼容导致get/set方法无法使用

1、问题 最近了解到一款叫CodeGeeX 的智能编程助手&#xff0c;想要试用一下&#xff0c;但是IDEA2018版本太低了&#xff0c;没有CodeGeeX插件&#xff0c;于是打算将IDEA升级到2023.2.5版本&#xff0c;具体升级过程略过&#xff0c;升级完成后&#xff0c;启动项目&#xf…...

企业微信服务商代开发模式获取授权企业的客户信息

服务商代开发素材&#xff1a; 服务商可信ip 企业微信认证 测试时不用再次创建一个企业微信&#xff0c;可以用当前的企业微信作为授权企业使用一、创建代开发应用模板 1&#xff0c;代开发模板回调URL配置 参考 注意&#xff1a;保存代开发应用模板时的corpId是服务商的企业…...

库存管理方法有哪些

库存管理是工作中一个离不开的话题&#xff0c;不管是仓管还是业务员都或多或少接触过库存管理方面的工作&#xff0c;例如&#xff1a;进货、销售、库存盘点等等这些都属于库存管理的范筹&#xff0c;那么库存管理方法有哪些&#xff1f;用哪种方法管理库存比较好&#xff0c;…...

数字化车间推动制造业生产创新

一、数字化车间应用场景 1&#xff1a;资源智能化管理 数字化车间通过搭建智能化的设备监测系统&#xff0c;实时采集和监控设备的运行状态和生产数据&#xff0c;对设备进行实时管理和维护&#xff0c;降低故障率和维修成本。同时&#xff0c;通过对生产过程中的数据采集和分…...

Linux的安装及管理程序

一、如何在linux安装卸载软件 1. 编译安装 灵活性较高 难度较大 可以安装较新的版本 2. rpm安装&#xff08;redhat&#xff09; linux 包安装 查软件信息&#xff1a;是否安装&#xff0c;文件列表 rpm 软件名 3. yum yum是RPM升级版本&#xff0c;解决rpm的弊端 安装软件 首…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...