当前位置: 首页 > news >正文

做为骨干网络的分类模型的预训代码安装配置简单记录

一、安装配置环境

1、准备工作

代码地址

GitHub - bubbliiiing/classification-pytorch: 这是各个主干网络分类模型的源码,可以用于训练自己的分类模型。

# 创建环境
conda create -n ptorch1_2_0 python=3.6
# 然后启动
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
pip install scipy==1.2.1 numpy==1.17.0 matplotlib==3.1.2 opencv_python==4.1.2.30 tqdm==4.60.0 Pillow==8.2.0 h5py==2.10.0

下载好后 他的那个数据集 按他那个配置,然后在项目根目录下运行

python txt_annotation.py 

生成对应的 txt 文件

2、遇到的问题

1、

ImportError: TensorBoard logging requires TensorBoard with Python summary writer installed. This should be available in 1.14 or above.

解决

pip install tensorboard

2、

ModuleNotFoundError: No module named 'past'

解决办法

pip install future

3、

ImportError: libSM.so.6: cannot open shared object file: No such file or directory
# 和
ImportError: libXrender.so.1: cannot open shared object file: No such file or directory

解决

apt-get install libsm6
apt-get install libxrender1

二、debug 记录 

1、train_lines  

 val_lines

 2、 show_config

----------------------------------------------------------------------
|                     keys |                                   values|
----------------------------------------------------------------------
|              num_classes |                                        2|
|                 backbone |                              mobilenetv2|
|               model_path |                                         |
|              input_shape |                               [224, 224]|
|               Init_Epoch |                                        0|
|             Freeze_Epoch |                                       50|
|           UnFreeze_Epoch |                                      200|
|        Freeze_batch_size |                                       32|
|      Unfreeze_batch_size |                                       32|
|             Freeze_Train |                                     True|
|                  Init_lr |                                     0.01|
|                   Min_lr |                                   0.0001|
|           optimizer_type |                                      sgd|
|                 momentum |                                      0.9|
|            lr_decay_type |                                      cos|
|              save_period |                                       10|
|                 save_dir |                                     logs|
|              num_workers |                                        4|
|                num_train |                                    20000|
|                  num_val |                                     5000|
----------------------------------------------------------------------

3、 optimizer

4、打印日志

Start Train
Epoch 1/200:   0%|                        | 0/625 [00:00<?, ?it/s<class 'dict'>]

utils_fit.py --- 19

    if local_rank == 0:print('Start Train')pbar = tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3)

5、

gen

 batch

 

三、其它

1、打印模型 model, 这个应该是 backbone

MobileNetV2((features): Sequential((0): ConvBNReLU((0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)(2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(2): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=96, bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(3): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144, bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(4): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(144, 144, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=144, bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(144, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(5): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(6): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(7): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(8): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(9): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(10): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(11): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(12): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(13): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(14): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(15): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(16): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(17): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(18): ConvBNReLU((0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1280, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True)))(classifier): Sequential((0): Dropout(p=0.2, inplace=False)(1): Linear(in_features=1280, out_features=2, bias=True))
)

2、数据集导入与建立

train.py --- 384  397

train_dataset   = DataGenerator(train_lines, input_shape, True)
val_dataset     = DataGenerator(val_lines, input_shape, False)gen             = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=train_sampler)
gen_val         = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True,drop_last=True, collate_fn=detection_collate, sampler=val_sampler)

3、 开始训练模型

train.py --- 404

for epoch in range(Init_Epoch, UnFreeze_Epoch):

训练过程在  train.py --- 452

fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank)

 

4、调整学习率

train.py --- 450

set_optimizer_lr(optimizer, lr_scheduler_func, epoch)

5、前向传播的入口

utils_fit.py --- 40

outputs     = model_train(images)

相关文章:

做为骨干网络的分类模型的预训代码安装配置简单记录

一、安装配置环境 1、准备工作 代码地址 GitHub - bubbliiiing/classification-pytorch: 这是各个主干网络分类模型的源码&#xff0c;可以用于训练自己的分类模型。 # 创建环境 conda create -n ptorch1_2_0 python3.6 # 然后启动 conda install pytorch1.2.0 torchvision…...

网络协议(九):应用层(域名、DNS、DHCP)

网络协议系列文章 网络协议(一)&#xff1a;基本概念、计算机之间的连接方式 网络协议(二)&#xff1a;MAC地址、IP地址、子网掩码、子网和超网 网络协议(三)&#xff1a;路由器原理及数据包传输过程 网络协议(四)&#xff1a;网络分类、ISP、上网方式、公网私网、NAT 网络…...

有趣的小知识(三)提升网站速度的秘诀:掌握缓存基础,让你的网站秒开

像MySql等传统的关系型数据库已经不能适用于所有的业务场景&#xff0c;比如电商系统的秒杀场景&#xff0c;APP首页的访问流量高峰场景&#xff0c;很容易造成关系型数据库的瘫痪&#xff0c;随着缓存技术的出现很好的解决了这个问题。 一、缓存的概念&#xff08;什么是缓存…...

SpringCloud之服务拆分和实现远程调用案例

服务拆分对单体架构项目来说&#xff1a;简单方便&#xff0c;高度耦合&#xff0c;扩展性差&#xff0c;适合小型项目。而对于分布式架构来说&#xff1a;低耦合&#xff0c;扩展性好&#xff0c;但架构复杂&#xff0c;难度大。微服务就是一种良好的分布式架构方案&#xff1…...

mybatis: Invalid bound statement (not found): com.atguigu.dao.UserDao.save

问题描述&#xff1a; 1 问题实质: dao层(又叫mapper接口)跟mapper.xml文件没有映射 2 问题原因: 出现这种映射问题的原因分为低级原因和更低级原因两种 更低级原因: (1)dao层的方法和mapper.xml中的方法不一样; (2)mapper中的namespace 值 和对应的dao层entity层不一致 &…...

JavaScript 代码规范

所有的 JavaScript 项目适用同一种规范。JavaScript 代码规范代码规范通常包括以下几个方面:变量和函数的命名规则空格&#xff0c;缩进&#xff0c;注释的使用规则。其他常用规范……规范的代码可以更易于阅读与维护。代码规范一般在开发前规定&#xff0c;可以跟你的团队成员…...

6综合项目 旅游网 【6.我的收藏和收藏排行榜】

我的收藏分析先登录→拿到当前登录的用户信息&#xff0c;从数据库中获取uid和对应uid的rid集合→将rid集合信息展示到我的收藏前台代码判断用户是否登录&#xff0c;传递uid&#xff0c;通过uid查找其对应的rid集合当查询的属性涉及到多张表&#xff0c;则必须使用多表连接&am…...

openpnp - error - 微调mark点坐标后,更新板子其他原件其他坐标报错的变通方法

文章目录openpnp - error - 微调mark点坐标后,更新板子其他原件其他坐标报错的变通方法概述想出来一个变通的方法ENDopenpnp - error - 微调mark点坐标后,更新板子其他原件其他坐标报错的变通方法 概述 载入坐标文件后, 指定左下角远点坐标, 然后定位板子上的3个Mark点, 因为…...

借助ChatGPT爆火,股价暴涨又暴跌后,C3.ai仍面临巨大风险

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 C3.ai的股价 作为一家人工智能技术提供商&#xff0c;C3.ai&#xff08;AI&#xff09;的股价曾在2021年初随着炒作情绪的增加&#xff0c;达到了历史最高点&#xff0c;但自那以后其股价就下跌了90%&#xff0c;而且炒作情…...

蓝桥杯-数位排序

蓝桥杯-数位排序1、问题描述2、解题思路3、代码实现1、问题描述 小蓝对一个数的数位之和很感兴趣, 今天他要按照数位之和给数排序。当 两个数各个数位之和不同时, 将数位和较小的排在前面, 当数位之和相等时, 将数值小的排在前面。 例如, 2022 排在 409 前面, 因为 2022 的数位…...

【ES实战】ES 插件包离线安装(本地文件)

ES 插件包离线安装&#xff08;本地文件&#xff09; 文章目录ES 插件包离线安装&#xff08;本地文件&#xff09;使用安装命令安装直接解压式验证安装情况常用的分词插件analysis-ik analysis-pinyin analysis-dynamic-synonym 在集群的节点上分发插件的ZIP安装包 使用安…...

Spring的核心基础——IOC与DI

文章目录一、Spring简介1 Spring介绍1.1 为什么要学1.2 学什么2 初识Spring2.1 Spring家族2.2 Spring发展史3 Spring体系结构3.1 Spring Framework系统架构图4 Spring核心概念问题导入4.1 核心概念二、IOC和DI入门1 IOC入门问题导入1.1 门案例思路分析1.2 实现步骤1.3 实现代码…...

C++正则表达式基础

文章目录1. 查找第一个匹配的2. 查找所有结果3. 打印匹配结果的上下文4. 使用子表达式5. 查找并替换注意: .&#xff08;点&#xff09;在括号中没有特殊含义&#xff0c;无需转义用\转义。 1. 查找第一个匹配的 #include <iostream> #include <regex>using names…...

如何在网络安全中使用人工智能并避免受困于此

人工智能在网络安全中的应用正在迅速增长&#xff0c;并对威胁检测、事件响应、欺诈检测和漏洞管理产生了重大影响。根据Juniper Research的一份报告&#xff0c;预计到2023年&#xff0c;使用人工智能进行欺诈检测和预防将为企业每年节省110亿美元。但是&#xff0c;如何将人工…...

生态 | 人大金仓与超聚变的多个产品完成兼容认证

近日&#xff0c;人大金仓与超聚变数字技术有限公司&#xff08;简称“超聚变”&#xff09;完成了多款产品的兼容互认测试。测试表明&#xff0c;人大金仓KingbaseES V8数据库与超聚变服务器操作系统FusionOS、超聚变FusionOne基础设施完全兼容&#xff0c;人大金仓异构数据同…...

4自由度串联机械臂按颜色分拣物品功能的实现

1. 功能说明 本实验要实现的功能是&#xff1a;将黑、白两种颜色的工件分别放置在传感器上时&#xff0c;机械臂会根据检测到的颜色&#xff0c;将工件搬运至写有相应颜色字样区域。 2. 使用样机 本实验使用的样机为4自由度串联机械臂。 3. 运动功能实现 3.1 电子硬件 在这个…...

玩转结构体---【C语言】

⛩️博主主页&#xff1a;威化小餅干&#x1f4dd;系列专栏&#xff1a;【C语言】藏宝图&#x1f38f; ✨绳锯⽊断&#xff0c;⽔滴⽯穿&#xff01;一个编程爱好者的学习记录!✨目录结构体类型的声明结构体成员访问结构体传参前言我们是否有想过&#xff0c;为什么会有结构体呢…...

c语言指针怎么理解 第二部分

第四&#xff0c;指针有啥用。 比方说&#xff0c;我们有个函数&#xff0c;如下&#xff1a; int add&#xff08;int x){ return (x1); //把输入的值加1并返回结果。 } 好了&#xff0c;应用的时候是这样的&#xff1a; { int a1; aadd(a); //add函数返回的是a1 //现在 a等于…...

GC简介和监控调优

GC简介&#xff1a; GC(Garbage Collection)是java中的垃圾回收机制&#xff0c;是Java与C/C的主要区别之一&#xff0c;在使用JAVA的时候&#xff0c;一般不需要专门编写内存回收和垃圾清理代 码。这是因为在Java虚拟机中&#xff0c;存在自动内存管理和垃圾清扫机制。 什么…...

Understanding The Linux Kernel --- Part2 Memory Addressing

内存寻址 操作系统自身不必完全了解物理内存&#xff0c;如今的微处理器包含的硬件线路使内存管理既高效又健壮&#xff0c;所以编程错误就不会对该程序之外的内存产生非法访问 x86如何进行芯片级内存寻址Linux如何利用寻址硬件 x86 三种不同的地址术语 逻辑地址 逻辑地址…...

前后端分页查询好大的一个坑(已解决)

前言&#xff1a;如果你在做前后端的分页查询&#xff0c;找不到错误&#xff0c;请你来看看是否是和我一样的情况&#xff1f;情况&#xff1a;做了一个前后盾UI的项目&#xff0c;有一个页面是查询系统日志&#xff0c;要进行分页查询&#xff1b;第一页的&#xff1a;第5页的…...

Python批量执行读取ini文件和写入ini文件时,性能比较低怎么办,给出解决方案和源码

Python批量执行读取ini文件和写入ini文件时&#xff0c;性能比较低怎么办&#xff0c;给出解决方案和源码 解决方案&#xff1a; 使用ConfigParser的缓存机制&#xff0c;可以避免频繁读取ini文件造成的性能问题。 将ini文件转换为json格式&#xff0c;使用json库进行读写操作…...

微机原理与接口技术 汇编语言程序设计DOS常用命令

OS&#xff08;磁盘操作系统&#xff09;命令&#xff0c;是DOS操作系统的命令&#xff0c;是一种面向磁盘的操作命令&#xff0c;主要包括目录操作类命令、磁盘操作类命令、文件操作类命令和其它命令。 使用技巧 DOS命令不区分大小写&#xff0c;比如C盘的Program Files&…...

4.ffmpeg命令转码规则、过滤器介绍、手动流map选项

在上章我们学习了ffmpeg命令行帮助以及选项查找 本章我们来深入学习ffmpeg命令转码规则、过滤器介绍、手动流map选项 参考链接: 1.ffmpeg命令行转码流程 ffmpeg命令行转码流程如下图所示: 对应中文则是: 步骤如下所示: ffmpeg调用libavformat库(包含解复用器)来读取输入文件…...

【python】标准库详解

注&#xff1a;最后有面试挑战&#xff0c;看看自己掌握了吗 文章目录Standard Library简介python内置对象如何安装发布第三方模块10最好用的模块汇总包的本质datetime模块案例Math模块random模块OS模块sys模块time模块总结自定义模块标准库模块用help查看time模块常用第三方库…...

Golang Map原理(底层结构、查找/新增/删除、扩缩容)

参考&#xff1a; 解剖Go语言map底层实现Go语言核心手册-3.字典 一、Go Map底层结构&#xff1a; Go map的底层实现是一个哈希表&#xff08;数组 链表&#xff09;&#xff0c;使用拉链法消除哈希冲突&#xff0c;因此实现map的过程实际上就是实现哈希表的过程。 先来看下…...

Java_数组

数组 1.概念 ​ 需求&#xff1a;现在需要统计软件技术1班47名同学的成绩情况&#xff0c;例如计算平均成绩、最高成绩等。如果只能使用变量的话&#xff0c;那么需要定义100个变量&#xff0c;这样就比较复杂了。这时我们就可以使用数组来记住这47名同学的成绩&#xff0c;然…...

list与vector的区别

相信大家已经学过list与vector&#xff0c;关于它们的不同&#xff0c;我做了一些总结&#xff0c;如下表&#xff1a; vector list底层结构动态顺序表&#xff0c;一段连续的空间带头结点的双向链表随机访问支持随机访问&#xff0c;访问某个元素的效率…...

【C++、数据结构】位图、布隆过滤器、哈希切割(哈希思想的应用)

文章目录&#x1f4d6; 前言1. 位图1.1 海量数据处理思路分析&#xff1a;1.2 位图的具体实现&#xff1a;1.3 用位图解决问题&#xff1a;应用一&#xff1a;应用二&#xff1a;应用三&#xff1a;2. 布隆过滤器2.1 布隆过滤器的概念&#xff1a;2.2 布隆过滤器的测试&#xf…...

计算机网络安全基础知识3:网站漏洞,安装phpstudy,安装靶场漏洞DVWA,搭建一个网站

计算机网络安全基础知识3&#xff1a;网站漏洞&#xff0c;安装phpstudy&#xff0c;安装靶场漏洞DVWA&#xff0c;搭建一个网站 2022找工作是学历、能力和运气的超强结合体&#xff0c;遇到寒冬&#xff0c;大厂不招人&#xff0c;可能很多算法学生都得去找开发&#xff0c;测…...

网站展示效果图/360搜索引擎优化

导读一段时期以来 “微服务架构 ”一直是一个热门词汇&#xff0c;各种技术类公众号或架构分享会议上&#xff0c;关于微服务架构的讨论和主题也都非常多。对于大部分初创互联网公司来说&#xff0c;早期的单体应用结构才是最合适的选择&#xff0c;只有当业务进入快速发展期&a…...

网站建设需要做的事情/免费网络营销推广软件

在PHP中&#xff0c;数组函数 array_uintersect_assoc () 使用用户提供的回调函数比较值&#xff0c;用内置的函数比较键&#xff0c;计算数组交集。 函数语法&#xff1a; array_udiff_assoc ( array $array1 , array $array2 [, array $array3... ], callable $value_compar…...

wordpress 模特模板/提交网址给百度

时间滑动计算 今天遇到一个需求大致是这样的,我们有一个业务涉及到用户打卡,用户可以一天多次打卡,我们希望计算出7天内打卡8次以上,且打卡时间分布在4天以上的时间,当然这只是个例子,我们具体解释一下这个需求 用户一天可以打卡多次,所以要求打卡必须分布在4天以上7天…...

如何向谷歌提交网站/网络推广方案范文

if结构 多重if结构&#xff1a;if-else语句 嵌套if结构&#xff1a;if中嵌套if结构 switch结构 注意case后的冒号&#xff01;&#xff01;&#xff01; break如果没有&#xff0c;就会在当前的case后一直顺序运行&#xff0c;知道default switch表达式中计算结果可以是&…...

网站制作百度资源/国内真正的永久免费砖石

如何将c&#xff1a;forEach标记的循环索引附加到struts select / text标记的属性&#xff1f;例如.抛出以下错误org.apache.struts.taglib.html.SelectTag.calculateMatchValues(SelectTag.java:246)中的javax.servlet.jsp.JspException现在,当我在< html&#xff1a;selec…...

南宁高新区建设房产局网站/企业网站推广方案策划

linux中的进程管理&#xff1a; 查看进程命令&#xff1a; ps &#xff1a;查看应用级别的进程 ps -e&#xff1a; 查看系统应用级的进程 ps -ef &#xff1a;显示进程的全部信息(这个命令经常用) ps -ef|grep 关键字&#xff1a; 查看带有关键字的进程 关闭进程命令&#xff1…...