当前位置: 首页 > news >正文

智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.人工兔算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用人工兔算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.人工兔算法

人工兔算法原理请参考:https://blog.csdn.net/u011835903/article/details/128491707
人工兔算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

人工兔算法参数如下:

%% 设定人工兔优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明人工兔算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.人工兔算法4.实验参数设定5.算法结果6.参考文…...

【ubuntu 22.04】安装vscode并配置正常访问应用商店

注意:要去vscode官网下载deb安装包,在软件商店下载的版本不支持输入中文 在ubuntu下用火狐浏览器无法访问vscode官网,此时可以手动进行DNS解析,打开DNS在线查询工具,解析以下主机地址(复制最后一个IP地址&a…...

K8s出现问题时,如何排查解决!

K8s问题的排查 1. POD启动异常、部分节点无法启动pod2. 审视集群状态3. 追踪事件日志4. 聚焦Pod状态5. 检查网络连通性6. 审视存储配置7. 研究容器日志8. K8S集群网络通信9. 问题:Service 是否通过 DNS 工作?10. 总结1、POD启动异常、部分节点无法启动p…...

2015年第四届数学建模国际赛小美赛B题南极洲的平均温度解题全过程文档及程序

2015年第四届数学建模国际赛小美赛 B题 南极洲的平均温度 原题再现: 地表平均温度是反映气候变化和全球变暖的重要指标。然而,在以前的估计中,在如何界定土地平均数方面存在一些方法上的差异。为简单起见,我们只考虑南极洲。请建…...

npm常见错误

三个方面 1. npm ERR! code ELIFECYCLE npm ERR! errno 1 npm ERR! code ELIFECYCLE npm ERR! errno 1 npm ERR! phantomjs-prebuilt2.1.15 install: node install.js npm ERR! Exit status 1 npm ERR! npm ERR! Failed at the phantomjs-prebuilt2.1.15 install script. np…...

JVM入门到入土-Java虚拟机寄存器指令集与栈指令集

JVM入门到入土-Java虚拟机寄存器指令集与栈指令集 HotSpot虚拟机中的任何操作都需要入栈和出栈的步骤。 由于跨平台性的设计,Java的指令都是根据栈来设计的。不同平台CPU架构不同,所以不能设计为基于寄存器的。优点是跨平台,指令集小&#x…...

MS2244模拟开关可Pin to Pin兼容NJM2244

MS2244 是一款集成的视频开关,实现三输入视频或音频信号的三选一。可Pin to Pin兼容NJM2244。 芯片集成了 75Ω驱动电路,可以直接驱动电视监控器。芯片工作电压 5V~12V,带宽 10MHz,抗串扰 70dB (4.43MHz)。另外芯片还集…...

PostgreSQL 可观测性最佳实践

简介 软件简述 PostgreSQL 是一种开源的关系型数据库管理系统 (RDBMS),它提供了许多可观测性选项,以确保数据库的稳定性和可靠性。 可观测性 可观测性(Observability)是指对数据库状态和操作进行监控和记录,以便在…...

51单片机相关寄存器

前言 单片机复习的时候对应寄存器的记忆感觉很混乱,这里进行一下整理,后面的单词是我用来辅助记忆的,可能并不是表示原本的含义。 P3口的第二功能 0RXD 串行数据输入口 1TXD串行数据输出口2INT0外部中断0输入3INT1外部中断1输入4T0定时器0外部计数输入…...

二叉树进阶题目(超详解)

文章目录 前言根据二叉树创建字符串题目分析写代码 二叉树的层序遍历题目分析 写代码二叉树的层序遍历II题目分析写代码 二叉树的最近公共祖先题目分析写代码时间复杂度 优化思路优化的代码 二叉搜索树与双向链表题目分析写代码 从前序与中序遍历序列构造二叉树题目分析写代码从…...

W6100-EVB-Pico评估版介绍

文章目录 1 简介2 硬件资源2.1 硬件规格2.2 引脚定义2.3 工作条件 3 参考资料3.1 Datasheet3.2 原理图3.3 尺寸图(尺寸:mm)3.4 参考例程 4 硬件协议栈优势 1 简介 W6100-EVB-Pico是一款基于树莓派RP2040和全硬件TCP/IP协议栈以太网芯片W6100的…...

嵌入式面试准备

题目都摘于网上 嵌入式系统中经常要用到无限循环,如何用C编写死循环 while(1){}或者for(;😉 内存分区 代码区,全局区(全局变量,静态变量,以及常量),栈区,堆区 const关键…...

在Linux Docker中部署RStudio Server,实现高效远程访问

🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、Cpolar杂谈 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 安装RStudio Server二. 本地访问三. Linux 安装cpolar四. 配置RStudio serv…...

EternalBlue【永恒之蓝】漏洞详解(复现、演示、远程、后门、入侵、防御)内容丰富-深入剖析漏洞原理-漏洞成因-以及报错解决方法-值得收藏!

漏洞背景: 1.何为永恒之蓝? 永恒之蓝(Eternal Blue)爆发于2017年4月14日晚,是一种利用Windows系统的SMB协议漏洞来获取系统的最高权限,以此来控制被入侵的计算机。甚至于2017年5月12日, 不法分子…...

长链接与在线文件

什么是在线文件 常见的聊天工具,比如。。。微信,你可以发送一个文件给对端,即使对端不在线,这个文件也可以暂存在服务器上面,直到接收端上线消费或者超时,这个叫离线文件。与之对应的,在线文件要…...

Python内置数据类型等入门语(句)法

内置数据类型 数字(Number)关键字: int 、float、complex字符串(String)关键字:单引号,双引号 三引号都可以表示,8 种内置类型都可转为字符串类型列表(List) 关键符号 […...

ElasticSearch之RestClient笔记

1. ElasticSearch 1.1 倒排索引 1.2 ElasticSearch和Mysql对比 1.3 RestClient操作 导入依赖 <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId><version>7.15.…...

饥荒Mod 开发(二二):显示物品信息

饥荒Mod 开发(二一)&#xff1a;超大便携背包&#xff0c;超大物品栏&#xff0c;永久保鲜 饥荒Mod 开发(二三)&#xff1a;显示物品栏详细信息 饥荒中的物品没有详细信息&#xff0c;基本上只有一个名字&#xff0c;所以很多物品的功能都不知道&#xff0c;比如浆果吃了也不知…...

Microsoft Edge使用方法和心得

Microsoft Edge使用方法和心得 大家好&#xff0c;我是豪哥&#xff0c;一名来自杭州的Java程序员&#xff0c;今天我想分享一下我对Microsoft Edge的使用方法和心得。作为一名热爱编程的程序员&#xff0c;我发现一个高效的浏览器对于我们的工作和学习至关重要。而Microsoft …...

Kafka操作指令笔记

查堆积用命令查&#xff1a; ./kafka-consumer-groups.sh --bootstrap-server {kafka集群地址} --describe --group {消费组名称}bin/kafka-consumer-groups.sh --bootstrap-server localhost:9092 --describe --all-groups #查看所有组别的积压情况可以通过grep、awk或其他文…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...