智能优化算法应用:基于驾驶训练算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于驾驶训练算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于驾驶训练算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.驾驶训练算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用驾驶训练算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.驾驶训练算法
驾驶训练算法原理请参考:https://blog.csdn.net/u011835903/article/details/130538785
驾驶训练算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
驾驶训练算法参数如下:
%% 设定驾驶训练优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果


从结果来看,覆盖率在优化过程中不断上升。表明驾驶训练算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:
智能优化算法应用:基于驾驶训练算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于驾驶训练算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于驾驶训练算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.驾驶训练算法4.实验参数设定5.算法结果6.…...
【论文阅读】MCANet: Medical Image Segmentation with Multi-Scale Cross-Axis Attention
文章目录 摘要创新点总结实现效果总结 摘要 链接:https://arxiv.org/abs/2312.08866 医学图像分割是医学图像处理和计算机视觉领域的关键挑战之一。由于病变区域或器官的大小和形状各异,有效地捕捉多尺度信息和建立像素间的长距离依赖性至关重要。本文提…...
机器视觉实战应用:手势、人脸、动作以及手势鼠标构建(一)
CV实战应用手势、人脸、动作以及手势鼠标构建(一)总起 核心思想 手势识别是一种常见的计算机视觉应用,它可以通过摄像头或者预先录制的视频图像来追踪和识别人类手势。手势识别的应用非常广泛,例如在游戏、虚拟现实、人机交互等…...
python作业题百度网盘,python作业答案怎么查
大家好,小编来为大家解答以下问题,python作业题百度网盘,python作业答案怎么查,今天让我们一起来看看吧! 1 以下代码的输出结果为: alist [1, 2, 3, 4] print(alist.reverse()) print(alist) A.[4, 3, 2, …...
centos7.9中离线安装nginx开启ssl,arm架构
一、首先需要去国内相关镜像库下载相关依赖rpm: http://mirrors.bfsu.edu.cn/centos-altarch/7.9.2009/os/aarch64/ http://mirror.nju.edu.cn/centos-altarch/7.9.2009/os/aarch64/ http://mirrors.tuna.tsinghua.edu.cn/centos-altarch/7.9.2009/os/aarch64/ htt…...
LENOVO联想笔记本小新Pro 14 IRH8 2023款(83AL)电脑原装出厂Win11系统恢复预装OEM系统
链接:https://pan.baidu.com/s/1M1iSFahokiIHF3CppNpL4w?pwdzr8y 提取码:zr8y 联想原厂系统自带所有驱动、出厂主题壁纸、Office办公软件、联想电脑管家等自带的预装软件程序 所需要工具:16G或以上的U盘 文件格式:ISO 文件…...
blender使用faceit绑定自己的表情动作
blender使用faceit绑定自己的表情控制模型 faceit是个神器,来记录一下如何让表情动起来保持相对位置头部分离,方便后续绑定faceitfaceit的注册rig生成地标Animate可以修正表情烘培之前记得保存使用Faceit的整个流程 faceit是个神器,来记录一下…...
有关List的线程安全、高效读取:不变模式下的CopyOnWriteArrayList类、数据共享通道:BlockingQueue
有关List的线程安全 队列、链表之类的数据结构也是极常用的,几乎所有的应用程序都会与之相关。在java中, ArrayList和Vector都使用数组作为其内部实现。两者最大的不同在与Vector是线程安全的。 而ArrayList不是。此外LinkedList使用链表的数据结构实现…...
OCC服务器和BCC服务器中文件同步
OCC服务器到BCC服务器文件正向同步 需求:编写shell脚本,使用rsync命令来同步目录,把全部需要同步的目录放在配置文件中,设置定时任务自动同步 服务器IP: 服务器类型IP地址OCC服务器192.168.1.188BCC服务器192.168.1…...
工具系列:TimeGPT_(2)使用外生变量时间序列预测
文章目录 TimeGPT使用外生变量时间序列预测导入相关工具包预测欧美国家次日电力价格案例 TimeGPT使用外生变量时间序列预测 外生变量在时间序列预测中非常重要,因为它们提供了可能影响预测的额外信息。这些变量可以包括假日标记、营销支出、天气数据或与你正在预测…...
应用于前端的自然断点法:wasm应用示例
某月某日,虾神本虾接到了这样一个需求,前端获取数据之后,在渲染之前,要对数据进行分类,分类的方法可以选择常用几种,例如等距法、自然断点法、标准差分类法等…… 问:为什么要在前端࿱…...
web前端javaScript笔记——(6)数组
对象一般分为内建对象,宿主对象,自定义对象。 数组(Array) 数组也是一个对象 它和我们普通对象功能类似,也是用来存储一些值的 不同的是普通对象是使用字符串作为属性名的,而数组时使用数字来作为索引操作元素案引: 从0开始的…...
vue的props
Vue的props是组件之间传递数据的一种方式,可以在组件中定义props并接收外部传递的数据。 在父组件中使用子组件时,可以使用v-bind指令将数据传递给子组件的props。子组件中可以通过props属性接收并使用这些数据。 父组件中: <template&…...
【51单片机系列】DS18B20温度传感器模块
本文是关于温度传感器的相关内容。 文章目录 一、 DS18B20数字温度传感器介绍1.1、 DS18B20温度传感器的特点1.2、DA18B20内部结构1.3、 DS18B20的温度转换规则1.4、 DS18B20的ROM指令表1.6、 计算温度1.7、 读写时序 二、DS18B20使用示例 一、 DS18B20数字温度传感器介绍 DS1…...
ubuntu20.04 conda环境配置Mask2former记录
建议先看完再按照步骤安装 代码地址:GitHub - facebookresearch/Mask2Former: Code release for "Masked-attention Mask Transformer for Universal Image Segmentation" 一、配置环境 1、创建虚拟环境 conda create -n mask2former python3.8conda …...
Git更新远程分支
当本地仓库无法找到新创建的远程分支时使用。 git fetch 是 Git 中的一个命令,用于从远程仓库获取最新的更改。 git fetch 会从指定的远程仓库中获取所有分支的最新提交,并将这些提交存储在本地的远程分支中。但是,这些更改并不会自动合并到…...
2023年软件工程师工作总结范文
各位领导: 你们好!时光飞逝,光阴似箭,转眼间又到了一年的年末。2023年又是一个不平凡的年,今年是国家十四个五年计划的第三年,是全面贯彻党的二十大精神的开局之年。中国XX集团作为中国XX行业中最大的企…...
STM32实战之深入理解I²C通信协议
目录 IC的物理层 IC的协议层 IC特点 IC 总线时序图 软件模拟IC时序分享 软件模拟IIC驱动AT24C02分享 例程简介 例程分享 STM32的IC外设 IIC(Inter-Integrated Circuit),也称为IC或TWI(Two-Wire Interface)&am…...
如何区分ChatGPT 3.5与ChatGPT 4:洞悉智能对话的新时代
如何区分ChatGPT 3.5与ChatGPT 4:洞悉智能对话的新时代 随着人工智能技术的快速发展,OpenAI持续推出更加强大和精准的模型,以改善和扩展用户体验。在聊天机器人领域,特别是OpenAI的ChatGPT系列,每一次迭代都带来了显著…...
blender scripting 编写
blender scripting 编写 一、查看ui按钮对应的代码二、查看或修改对象名称三、案例:渲染多张图片并导出对应的相机参数 一、查看ui按钮对应的代码 二、查看或修改对象名称 三、案例:渲染多张图片并导出对应的相机参数 注:通过ui交互都设置好…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
向量几何的二元性:叉乘模长与内积投影的深层联系
在数学与物理的空间世界中,向量运算构成了理解几何结构的基石。叉乘(外积)与点积(内积)作为向量代数的两大支柱,表面上呈现出截然不同的几何意义与代数形式,却在深层次上揭示了向量间相互作用的…...
goreplay
1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具,可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长,测试它所需的工作量也会呈指数级增长。GoRepl…...
Python的__call__ 方法
在 Python 中,__call__ 是一个特殊的魔术方法(magic method),它允许一个类的实例像函数一样被调用。当你在一个对象后面加上 () 并执行时(例如 obj()),Python 会自动调用该对象的 __call__ 方法…...
C++11 constexpr和字面类型:从入门到精通
文章目录 引言一、constexpr的基本概念与使用1.1 constexpr的定义与作用1.2 constexpr变量1.3 constexpr函数1.4 constexpr在类构造函数中的应用1.5 constexpr的优势 二、字面类型的基本概念与使用2.1 字面类型的定义与作用2.2 字面类型的应用场景2.2.1 常量定义2.2.2 模板参数…...
python打卡day49@浙大疏锦行
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 一、通道注意力模块复习 & CBAM实现 import torch import torch.nn as nnclass CBAM(nn.Module):def __init__…...
大模型真的像人一样“思考”和“理解”吗?
Yann LeCun 新研究的核心探讨:大语言模型(LLM)的“理解”和“思考”方式与人类认知的根本差异。 核心问题:大模型真的像人一样“思考”和“理解”吗? 人类的思考方式: 你的大脑是个超级整理师。面对海量信…...
