当前位置: 首页 > news >正文

asp网站上传/百度投诉热线中心客服

asp网站上传,百度投诉热线中心客服,科技医疗网站建设,淘宝网首页登录网页版智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.孔雀算法4.实验参数设定5.算法结果6.参考文献7.MA…

智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.孔雀算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用孔雀算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.孔雀算法

孔雀算法原理请参考:https://blog.csdn.net/u011835903/article/details/127779440
孔雀算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

孔雀算法参数如下:

%% 设定孔雀优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明孔雀算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.孔雀算法4.实验参数设定5.算法结果6.参考文献7.MA…...

Redis自动部署脚本编写

#!/bin/bash ck_ok() { if [ $? -ne 0 ] then echo "$1 error." exit 1 fi } download_redis() { cd /usr/local/src if [ -f redis-7.0.4.tar.gz ] then echo "当前目录已经存在redis-7.0.4.tar.gz&q…...

Tinker 环境下数据表的用法

如果我们要自己手动创建一个模型文件,最简单的方式是通过 make:model 来创建。 php artisan make:model Article 删除模型文件 rm app/Models/Article.php 创建模型的同时顺便创建数据库迁移 php artisan make:model Article -m Eloquent 表命名约定 在该文件中&am…...

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之线性布局容器Row组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之线性布局容器Row组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Row组件 沿水平方向布局容器。 子组件 可以包含子组件。 接口 Row(…...

JAVA——JDBC学习

视频连接:https://www.bilibili.com/video/BV1sK411B71e/?spm_id_from333.337.search-card.all.click&vd_source619f8ed6df662d99db4b3673d1d3ddcb 《视频讲解很详细!!推荐》 JDBC(Java DataBase Connectivity Java数据库连…...

Flask 用户信息编辑系统

Flask 用户信息编辑系统 web/templates/user/edit.html {% extends "common/layout_main.html" %} {% block content %} {% include "common/tab_user.html" %} <div class"row m-t user_edit_wrap"><div class"col-lg-12"…...

Spring DefaultListableBeanFactory源码分析

目录 一、概述 二、主要功能 三、核心功能解析 Bean定义的存储结构 ConcurrentHashMap的使用和意义 四、总结 一、概述 DefaultListableBeanFactory 是 Spring 框架中的一个核心类&#xff0c;它继承自AbstractAutowireCapableBeanFactory类&#xff0c;实现了 ListableBeanF…...

关于MySQL、分布式系统、SpringCloud面试题

前言 之前为了准备面试&#xff0c;收集整理了一些面试题。 本篇文章更新时间2023年12月27日。 最新的内容可以看我的原文&#xff1a;https://www.yuque.com/wfzx/ninzck/cbf0cxkrr6s1kniv MySQL 索引 说一下有哪些锁&#xff1f; 行锁有哪些&#xff1f; 性能优化 分库分表…...

2023年中职“网络安全”——B-5:网络安全事件响应(Server2216)

B-5&#xff1a;网络安全事件响应 任务环境说明&#xff1a; 服务器场景&#xff1a;Server2216&#xff08;开放链接&#xff09; 用户名:root密码&#xff1a;123456 1、黑客通过网络攻入本地服务器&#xff0c;通过特殊手段在系统中建立了多个异常进程&#xff0c;找出启…...

【论文解读】Learning based fast H.264 to H.265 transcoding

时间&#xff1a; 2015 年 级别&#xff1a; APSIPA 机构&#xff1a; 上海电力大学 摘要 新提出的视频编码标准HEVC (High Efficiency video coding)以其比H.264/AVC更好的编码效率&#xff0c;被工业界和学术界广泛接受和采用。在HEVC实现了约40%的编码效率提升的同时&…...

[vue]Echart使用手册

[vue]Echart使用手册 使用环境Echart的使用Echart所有组件和图表类型Echart 使用方法 使用环境 之前是在JQuery阶段使用Echart&#xff0c;直接引入Echart的js文件即可&#xff0c;现在是在vue中使用,不仅仅时echarts包&#xff0c;还需要安装vue-echarts&#xff1a; "…...

视频人脸识别马赛克处理

文章目录 前言一、实现思路&#xff1f;二、Coding三、实现效果 前言 前面几篇文章我们尝试了使用opencv完成图像人脸识别以及识别后贴图或者打马赛克的方法。 偶尔我们也会有需求在视频中将人脸马赛克化&#xff0c;opencv也提供了相应的方法来实现这个功能。 一、实现思路&a…...

2023-12-27 Python PC获取鼠标位置,移动鼠标到相应的位置 定时自动模拟鼠标点击,用于简单测试app用

一、核心源码如下&#xff1a; import pyautogui import timepyautogui.moveTo(600, 800) for i in range(20):time.sleep(0.1)x, y pyautogui.position()print("mouse position:", x, y)pyautogui.click()二、定时自动模拟鼠标点击&#xff0c;模拟键盘按键 impo…...

如何解决服务器CA证书过期的问题

一、问题的提出 最近在学习VPS&#xff0c;在Linux系统里给服务器安装某项服务时&#xff0c;在服务的log里看到下面的错误信息&#xff1a; failed to verify certificate: x509: certificate has expired or is not yet valid: current time 2023-12-25T04:42:38-05:00 is a…...

计算机基础面试题总结

47、OSI、TCP/IP、五层协议的体系结构以及各层协议 OSI分层&#xff08;7层&#xff09;&#xff1a;物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。 TCP/IP分层&#xff08;4层&#xff09;&#xff1a;网络接口层、网际层、运输层、应用层。 五层协议&…...

【算法练习】leetcode链表算法题合集

链表总结 增加表头元素倒数节点&#xff0c;使用快慢指针环形链表&#xff08;快慢指针&#xff09;合并有序链表&#xff0c;归并排序LRU缓存 算法题 删除链表元素 删除链表中的节点 LeetCode237. 删除链表中的节点 复制后一个节点的值&#xff0c;删除后面的节点&#x…...

2023.12.28每日一题

LeetCode每日一题 2735.收集巧克力 2735. 收集巧克力 - 力扣&#xff08;LeetCode&#xff09; 介绍 看题目看不懂&#xff0c;在评论区看到一个大哥解释&#xff0c;瞬间明白了。 一张桌子上有n件商品围成一圈&#xff0c;每件都有一个价签&#xff0c;它们构成数组nums。…...

231227-9步在RHEL8.8配置本地yum源仓库

Seciton 1&#xff1a;参考视频 RHEL8配置本地yum源仓库-安徽迪浮_哔哩哔哩_bilibili Seciton 2&#xff1a;具体操作 &#x1f3af; 第1步&#xff1a;查看光驱文件/dev/sr0是否已经挂载&#xff1f;此处已挂在 [lgklocalhost ~]$ df -h &#x1f3af; 第1步&#xff1a;查看…...

5. 创建型模式 - 单例模式

亦称&#xff1a; 单件模式、Singleton 意图 单例模式是一种创建型设计模式&#xff0c; 让你能够保证一个类只有一个实例&#xff0c; 并提供一个访问该实例的全局节点。 问题 单例模式同时解决了两个问题&#xff0c; 所以违反了单一职责原则&#xff1a; 保证一个类只有一…...

机器学习之人工神经网络(Artificial Neural Networks,ANN)

人工神经网络(Artificial Neural Networks,ANN)是机器学习中的一种模型,灵感来源于人脑的神经网络结构。它由神经元(或称为节点)构成的层级结构组成,每个神经元接收输入并生成输出,这些输入和输出通过权重进行连接。 人工神经网络(ANN)是一种模仿生物神经系统构建的…...

GetLastError()详细介绍

GetLastError() 是 Windows 操作系统提供的一个函数&#xff0c;用于获取调用线程最近一次发生的错误码。这个函数的定义如下&#xff1a; DWORD GetLastError(void); 调用 GetLastError() 函数可以帮助开发人员在发生错误时获取错误的详细信息&#xff0c;从而进行适当的错…...

【unity3D-粒子系统】粒子系统主模块-Particle System篇

&#x1f497; 未来的游戏开发程序媛&#xff0c;现在的努力学习菜鸡 &#x1f4a6;本专栏是我关于游戏开发的学习笔记 &#x1f236;本篇是unity的粒子系统主模块-Particle System 基础知识 Particle System 介绍&#xff1a;粒子系统的主模块&#xff0c;是必需的模块&#x…...

Windows搭建FTP服务器教学以及计算机端口介绍

目录 一. FTP服务器介绍 FTP服务器是什么意思&#xff1f; 二.Windows Service 2012 搭建FTP服务器 1.开启防火墙 2.创建组 ​编辑3.创建用户 4.用户绑定组 5.安装ftp服务器 ​编辑6.配置ftp服务器 7.配置ftp文件夹的权限 8.连接测试 三.计算机端口介绍 什么是网络…...

安防视频监控系统EasyCVR实现H.265视频在3秒内起播的注意事项

可视化云监控平台/安防视频监控系统EasyCVR视频综合管理平台&#xff0c;采用了开放式的网络结构&#xff0c;可以提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联、磁盘阵列存储、视频集中存储、云存储等丰富的视频能力&#xff0c;同时…...

CNN实现对手写字体的迭代

导入库 import torchvision import torch from torchvision.transforms import ToTensor from torch import nn import matplotlib.pyplot as plt 导入手写字体数据 train_dstorchvision.datasets.MNIST(data/,trainTrue,transformToTensor(),downloadTrue) test_dstorchvis…...

docker学习笔记01-安装docker

1.Docker的概述 用Go语言实现的开源应用项目&#xff08;container&#xff09;&#xff1b;克服操作系统的笨重&#xff1b;快速部署&#xff1b;只隔离应用程序的运行时环境但容器之间可以共享同一个操作系统&#xff1b;Docker通过隔离机制&#xff0c;每个容器间是互相隔离…...

【《设计模式之美》】如何取舍继承与组合

文章目录 什么情况下不推荐使用继承&#xff1f;组合相比继承有哪些优势&#xff1f;使用组合、继承的时机 本文主要想了解&#xff1a; 为什么组合优于继承&#xff0c;多用组合少用继承。如何使用组合来替代继承哪些情况适用继承、组合。有哪些设计模式使用到了继承、组合。 …...

一步到位:用Python实现PC屏幕截图并自动发送邮件,实现屏幕监控

在当前的数字化世界中&#xff0c;自动化已经成为我们日常生活和工作中的关键部分。它不仅提高了效率&#xff0c;还节省了大量的时间和精力。在这篇文章中&#xff0c;我们将探讨如何使用Python来实现一个特定的自动化任务 - PC屏幕截图自动发送到指定的邮箱。 这个任务可能看…...

Spring Boot+RocketMQ 实现多实例分布式环境下的事件驱动

为什么要使用MQ&#xff1f; 在Spring Boot Event这篇文章中已经通过Guava或者SpringBoot自身的Listener实现了事件驱动&#xff0c;已经做到了对业务的解耦。为什么还要用到MQ来进行业务解耦呢&#xff1f; 首先无论是通过Guava还是Spring Boot自身提供的监听注解来实现的事…...

oracle ORA-01704: string literal too long ORACLE数据库clob类型

当oracle数据表中有clob类型字段时候&#xff0c;insert或update的sql语句中&#xff0c;超过长度就会报错 ORA-01704: string literal too long update xxx set xxx <div><h1>123</h1></div> where id 100;可以修改为 DECLAREstr varchar2(10000…...