【计算机视觉】角点检测(Harris、SIFT)
Harris
角点指的是窗口延任意方向移动,都有很大变化量的点。

用数学公式表示为:

E(u,v)反映的移动后窗口的差异,w(x,y)为每个像素的点权值,I(x+u,y+v)是移动的像素值,I(x,y)是移动前的像素值。

将E(u,v)进行泰勒展开,直接建立E(u,v)和u,v的联系


最终:

M称为二阶矩矩阵(second moment matrix)
若 互不影响:
假设 :

只有在u方向上变化是E才会变,因此只有 都不为0时(x,y)才是角点。
若 相关可以通过正交化变成前面的形式:
就反映了点在某个方向上的变化率,之后当
都很大时,该点才是角点。

为了减少计算可以用R来判定是否为角点

SIFT
Harris角点检测不具有尺度不变性,窗口大小不同,响应的结果也不同。

所谓的尺度不变性,指的是提取器能够对不同的尺度下的同一个点,有比较大的响应值。

接下来,介绍的SIFT就是具有尺度不变性的特征提取算法。
在边缘提取的时候,用高斯一阶导对信号进行卷积,响应值最大的就是边界。
如果用高斯二阶导对信号进行卷积,0点就是边界点(二阶导等于0的点,对应一阶导的极值点)
如果用高斯二阶导在不同的信号上进行卷积,当信号宽度与高斯滤波核匹配的时候,就能得到绝对值最大的信号,这样就建立了尺度和滤波核之间的联系。
用不同的Laplacian对同一个信号进行卷积的时候,随着的增大,响应值会越来越不明显。

因为作为分母,
越来越大,卷积后的信号值就会越来越小 ,对于一阶偏导需要对卷积后的信号补偿
,对于二阶偏导需要对卷积后的信息补偿
,将响应值固定在一个尺度上。

补偿之后,就能用反映尺度

二维Laplacian高斯卷积核如下图所示:
当半径值正好与Laplacian为0的值匹配上的时候,响应值最大
假设这个圆是二进制的,简单来说就是找到一个合适的laplacian卷积核,卷积之后使得laplacian卷积核中小于0的部分权值为0,laplacian大于0的部分权值为1。
找到合适的laplacian卷积核,它的与信号半径有对应关系

SIFT使用的是DoG模版(两个高斯模版的差分),拥有和Laplacian类似的特性

一般而言,随着的增大,窗口也会变大,Laplacian每一次都会在原图进行卷积,卷积的成本就会增大。而DoG是利用高斯卷积核来做的,可以通过对较小
的卷积核卷积得到较大
的卷积核,减小卷积成本。


在找合适的尺度空间的时候,会进行非极大值抑制,只有当该点是27(上下两个尺度18个,当前尺度9个)个领接点中的极值时,认为该点为特征点,因此,有效DoG 个数为S时,总共的DoG个数为S+2(首尾不能构成三个尺度空间)。

每一个Octave表示对GuassianSpace缩小1/2后卷积,当我们需要更大的尺度的时候,需要跟大的sigma,意味着更大的卷积核更多的计算。SIFT算法中,将这样操作可以转换为,将图像缩小1/2,得到结果后将响应的sigma放大2倍,这样减少了计算的同时也得到了更大的尺度空间。

K的取值同样也很讲究, ,s为有效DoG个数。
K这样取值的好处是,对应高斯空间来说,只要将倒数第三图下采样2倍就能得到下一个Octave的第一个图,对于DoG空间来说,当前最后一个有效DoG的sigma与下一个Octave的第一个有效DoG的sigma是连续的(如图所示)

相关文章:
【计算机视觉】角点检测(Harris、SIFT)
Harris 角点指的是窗口延任意方向移动,都有很大变化量的点。 用数学公式表示为: E(u,v)反映的移动后窗口的差异,w(x,y)为每个像素的点权值,I(xu,yv)是移动的像素值,I(x,y)是移动前的像素值。 将E(u,v)进行泰勒展开&am…...
Python实现张万森下雪了的效果
系列文章 序号文章目录直达链接表白系列1浪漫520表白代码https://want595.blog.csdn.net/article/details/1306668812满屏表白代码https://want595.blog.csdn.net/article/details/1297945183跳动的爱心https://want595.blog.csdn.net/article/details/1295031234漂浮爱心http…...
最长的指定瑕疵度的元音子串 (100%用例)C卷 (JavaPythonNode.jsC语言C++)
开头和结尾都是元音字母(aeiouAEIOU)的字符串为 元音字符串 ,其中混杂的非元音字母数量为其 瑕疵度 。比如 : “ a ” 、 “ aa ”是元音字符串,其瑕疵度都为 0 “ aiur ”不是元音字符串(结尾不是元音字符) “ abira ”是元音字符串,其瑕…...
Qt/C++音视频开发62-电子放大/按下选择区域放大显示/任意选取区域放大
一、前言 电子放大这个功能思考了很久,也是一直拖到近期才静下心来完整这个小功能,这个功能的前提,主要得益于之前把滤镜打通了,玩出花样来了,只要传入对应的滤镜字符串,就可以实现各种各样的效果…...
Vue(一):Vue 入门与 Vue 指令
Vue 01. Vue 快速上手 1.1 Vue 的基本概念 用于 构建用户界面 的 渐进性 框架 构建用户界面:基于数据去渲染用户看到的界面渐进式:不需要学习全部的语法就能完成一些功能,学习是循序渐进的框架:一套完整的项目解决方案&#x…...
C语言——最古老的树
归纳编程学习的感悟, 记录奋斗路上的点滴, 希望能帮到一样刻苦的你! 如有不足欢迎指正! 共同学习交流! 🌎欢迎各位→点赞 👍 收藏⭐ 留言📝 缺乏明确的目标,一生将庸庸…...
dnSpy调试工具断点信息是保存在哪里的呢
本人是C#开发,dnSpy工具用的比较多,有时候想把有用的断点信息保留下来,挪到别的机器上也能使用。我做这个事情的主要目标是在调试我们公司的程序时,顺带把访问的sql也进行输出,就可以偷懒不用每次都去查阅代码了&#…...
融汇贯通 —— 2023年技术与心灵的双重成长旅程
当我们站在2023年的岁末,回望这一年赋予我们的经历和挑战,心中涌动的感慨与启示像朝日初升的光芒,照亮脚下的路,亦照见心中的路。在此,我想分享几个方面的感悟和成长,愿它们能有所触动,成为您前…...
基于element ui封装table组件
效果图: 1.封装表格代码如下 <template> <div><div class"TableList"><el-tablev-loading"loading"selection-change"selectionChange"class"table":data"tableData":border"hasBorde…...
MySQL进阶之(一)逻辑架构
一、逻辑架构 1.1 逻辑架构剖析1.1.1 连接层1.1.2 服务层01、基础服务组件02、SQL Interface:SQL 接口03、Parser:解析器04、Optimizer:查询优化器05、Caches & Buffers: 查询缓存组件 1.1.3 引擎层1.1.4 存储层1.1.5 总结 1.…...
【前端学习指南】开启 Vue 的学习之旅
🍭 Hello,我是爱吃糖的范同学 秋招终于结束了(拿到了比较满意的 offer🎉🎉🎉,后续也会有“面筋”系类给大家分享),目前我终于也有足够的时间和精力来完成我 23 年遗留下…...
编程笔记 html5cssjs 011 HTML页面划分
编程笔记 html5&css&js 011 HTML页面划分 HTML的框架、区块和布局是什么,它们之前的关系是怎样的?框架注意 接下来要看一下网页内的划分。通过框架、区块及布局等方式,将网页从一个长方形整体划分为若干个部分,以合理展示…...
Centos7:Jenkins+gitlab+node项目启动(2)
Centos7:Jenkinsgitlabnode项目启动(1) Centos7:Jenkinsgitlabnode项目启动(1)-CSDN博客 Centos7:Jenkinsgitlabnode项目启动(2) Centos7:Jenkinsgitlabnode项目启动(2)-CSDN博客 Centos7:Jenkinsgitlabnode项目启…...
Qt+Opencv:人脸检测
话接上一篇,我们仍使用在上篇《QtOpencv:Qt中部署opencv》创建的Qt项目来测试opencv提供的sample。 在正式开始本篇之前,我们先说做一下准备工作: 一、opencv官方文档 学习最权威和最可靠的方式,就是阅读官方文档和…...
ChatGPT在地学、GIS、气象、农业、生态、环境等领域中的高级应用
以ChatGPT、LLaMA、Gemini、DALLE、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助…...
Unreal Engine游戏引擎的优势
在现在这个繁荣的游戏开发行业中,选择合适的游戏引擎是非常重要的。其中,Unreal Engine作为一款功能强大的游戏引擎,在业界广受赞誉。那Unreal Engine游戏引擎究竟有哪些优势,带大家简单的了解一下。 图形渲染技术 Unreal Engin…...
[OCR]Python 3 下的文字识别CnOCR
目录 1 CnOCR 2 安装 3 实践 1 CnOCR CnOCR 是 Python 3 下的文字识别(Optical Character Recognition,简称OCR)工具包。 工具包支持简体中文、繁体中文(部分模型)、英文和数字的常见字符识别,支持竖…...
字符串序列判定(100%用例)C卷 (JavaPythonNode.jsC语言C++)
输入两个字符串 S 和 L ,都只包含英文小写字母。 S 长度 <=100 , L 长度 <=500,000 。判定 S 是否是 L 的有效字串。 判定规则: S 中的每个字符在 L 中都能找到(可以不连续),且 S 在L中字符的前后顺序与 S 中顺序要保持一致。(例如, S="ace" 是 L=&q…...
ERROR: No matching distribution found for torch==2.0.1解决方案
大家好,我是水滴~~ 本文主要介绍在安装 stable-diffusion-webui 时出现的 ERROR: No matching distribution found for torch2.0.1 问题的解决方案,希望能对你有所帮助。 《Python入门核心技术》专栏总目录・点这里 文章目录 问题描述解决方案离线安装 …...
ClickHouse基础知识(五):ClickHouse的SQL 操作
基本上来说传统关系型数据库(以 MySQL 为例)的 SQL 语句,ClickHouse 基本都支持, 这里不会从头讲解 SQL 语法只介绍 ClickHouse 与标准 SQL(MySQL)不一致的地方。 1. Insert 基本与标准 SQL(My…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
