当前位置: 首页 > news >正文

数据挖掘 K-Means聚类

未格式化之前的代码:

import pandas as pd#数据处理
from matplotlib import pyplot as plt#绘图
from sklearn.preprocessing import MinMaxScaler#归一化
from sklearn.cluster import KMeans#聚类
import os#处理文件os.environ["OMP_NUM_THREADS"] = '4'df = pd.read_excel("consumption_data.xls", usecols=["R", "F", "M"])#选取了“R”、“F”和“M”三列数据
df.dropna(inplace=True)#将缺失值删除
df_scale = MinMaxScaler().fit_transform(df)#归一化,使得数据在0到1的范围内
model = KMeans(n_clusters=3, random_state=0)#n_clusters参数设置为3,表示要将数据分成3个簇。random_state参数设置为0,以确保每次运行时都得到相同的结果
model.fit(df_scale)#训练模型
core = model.cluster_centers_#通过cluster_centers_属性获取聚类模型中心点的坐标,即每个簇的中心点
df["class"] = model.labels_#将每个数据点的簇标签保存在原始数据集的“class”列中,使用labels_属性获取每个数据点所属的簇的标签fig = plt.figure(figsize=(9, 9))#创建一个大小为9x9的图形窗口
ax = plt.axes(projection='3d')#创建一个3D坐标轴
center_x = []#创建空列表用于存储各个簇的中心点坐标。
center_y = []
center_z = []
for i, j in df.groupby(by="class"):#对数据集按簇标签进行分组ax.scatter3D(j["F"], j["R"], j["M"], label=i)#将每个簇的数据点在3D空间中绘制为散点图center_x.append(j["F"].mean())#计算每个簇的中心点坐标,并将其添加到相应的列表中。center_y.append(j["R"].mean())center_z.append(j["M"].mean())# ax.scatter3D(j["F"].mean(),j["R"].mean(),j["M"].mean(),marker="X") 使用scatter3D()函数将每个簇的中心点坐标(j["F"].mean(), j["R"].mean(), j["M"].mean())以"X"形状的标记绘制在图中。
ax.scatter3D(center_x, center_y, center_z, label='center', marker="X", alpha=1)#以“X”形状的标记绘制簇的中心点。alpha参数设置为1,表示散点图的透明度为完全不透明
plt.legend()#显示图例
plt.show()#显示图形for i, j in df.groupby(by="class"):#对数据集按簇标签进行分组。j[["R", "F", "M"]].plot(kind="kde", subplots=True, sharex=False)#对每个簇的三个特征绘制核密度图。kind="kde"指定绘制核密度图,subplots=True表示将三个子图绘制在同一画布上,sharex=False表示不共享x轴。plt.subplots_adjust(hspace=0.3)  # 调整子图的纵向间隙,hspace=0.3将纵向间隔设置为子图高度的30%。这将使得每个子图之间有一定的空白间隔plt.show()#显示图形

格式化之后的代码:

import pandas as pd  # 数据处理
from matplotlib import pyplot as plt  # 绘图
from sklearn.preprocessing import MinMaxScaler  # 归一化
from sklearn.cluster import KMeans  # 聚类
import os  # 处理文件os.environ["OMP_NUM_THREADS"] = '4'df = pd.read_excel("consumption_data.xls", usecols=["R", "F", "M"])  # 选取了“R”、“F”和“M”三列数据
df.dropna(inplace=True)  # 将缺失值删除
df_scale = MinMaxScaler().fit_transform(df)  # 归一化,使得数据在0到1的范围内
model = KMeans(n_clusters=3, random_state=0)  # n_clusters参数设置为3,表示要将数据分成3个簇。random_state参数设置为0,以确保每次运行时都得到相同的结果
model.fit(df_scale)  # 训练模型
core = model.cluster_centers_  # 通过cluster_centers_属性获取聚类模型中心点的坐标,即每个簇的中心点
df["class"] = model.labels_  # 将每个数据点的簇标签保存在原始数据集的“class”列中,使用labels_属性获取每个数据点所属的簇的标签fig = plt.figure(figsize=(9, 9))  # 创建一个大小为9x9的图形窗口
ax = plt.axes(projection='3d')  # 创建一个3D坐标轴
center_x = []  # 创建空列表用于存储各个簇的中心点坐标。
center_y = []
center_z = []
for i, j in df.groupby(by="class"):  # 对数据集按簇标签进行分组ax.scatter3D(j["F"], j["R"], j["M"], label=i)  # 将每个簇的数据点在3D空间中绘制为散点图center_x.append(j["F"].mean())  # 计算每个簇的中心点坐标,并将其添加到相应的列表中。center_y.append(j["R"].mean())center_z.append(j["M"].mean())# ax.scatter3D(j["F"].mean(),j["R"].mean(),j["M"].mean(),marker="X") 使用scatter3D()函数将每个簇的中心点坐标(j["F"].mean(), j["R"].mean(), j["M"].mean())以"X"形状的标记绘制在图中。
ax.scatter3D(center_x, center_y, center_z, label='center', marker="X",alpha=1)  # 以“X”形状的标记绘制簇的中心点。alpha参数设置为1,表示散点图的透明度为完全不透明
plt.legend()  # 显示图例
plt.show()  # 显示图形for i, j in df.groupby(by="class"):  # 对数据集按簇标签进行分组。j[["R", "F", "M"]].plot(kind="kde", subplots=True,sharex=False)  # 对每个簇的三个特征绘制核密度图。kind="kde"指定绘制核密度图,subplots=True表示将三个子图绘制在同一画布上,sharex=False表示不共享x轴。plt.subplots_adjust(hspace=0.3)  # 调整子图的纵向间隙,hspace=0.3将纵向间隔设置为子图高度的30%。这将使得每个子图之间有一定的空白间隔plt.show()  # 显示图形

相关文章:

数据挖掘 K-Means聚类

未格式化之前的代码: import pandas as pd#数据处理 from matplotlib import pyplot as plt#绘图 from sklearn.preprocessing import MinMaxScaler#归一化 from sklearn.cluster import KMeans#聚类 import os#处理文件os.environ["OMP_NUM_THREADS"] …...

医疗卫生行业网络安全需求发展

文章目录 一、行业安全建设需求分析1、等级保护2.0合规建设云计算技术大数据技术物联网技术移动互联网技术2、加强医疗数据安全保护加密存储与传输数据加强数据备份与恢复注重数据脱敏与分级保护3、强化网络安全制度管理完善应急预案与响应机制加强网络安全人员管理二、行业新技…...

【Unity热更新】学会AssetsBundle打包、加载、卸载

本教程详细讲解什么是AssetBundle压缩包机制!然后构建 AssetBundle、加载 AssetBundle 以及卸载 AssetBundle 的简要教程。这一个流程就是热更新! AssetBundles 简介 1.什么是AssetBundles? AssetBundles是Unity中一种用于打包和存储资源(如模型、纹理、声音等)的文件格…...

智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.指数分布算法4.实验参数设定5.算法结果6.…...

vue 监听浏览器关闭或刷新事件

vue 监听浏览器关闭或刷新事件 需求 web项目中使用socket时&#xff0c;涉及到关闭刷新浏览器多次连接问题&#xff0c;其中一个解决方法是在关闭或刷新浏览器时&#xff0c;将连接断开。 代码 <script> export default {// 可以在created、beforeMount或mounted生命…...

VuePress-theme-hope 搭建个人博客 2【快速上手】 —— 安装、部署 防止踩坑篇

续&#x1f446;VuePress、VuePress-theme-hope 搭建个人博客 1【快速上手】 项目常用命令 vuepress dev [dir] 会启动一个开发服务器&#xff0c;以便让你在本地开发你的 VuePress 站点。vuepress build [dir] 会将你的 VuePress 站点构建成静态文件&#xff0c;以便你进行后…...

ClickHouse基础知识(四):ClickHouse 引擎详解

1. 表引擎的使用 表引擎是 ClickHouse 的一大特色。可以说&#xff0c; 表引擎决定了如何存储表的数据。包括&#xff1a; ➢ 数据的存储方式和位置&#xff0c;写到哪里以及从哪里读取数据。 默认存放在/var/lib/clickhouse/data ➢ 支持哪些查询以及如何支持。 ➢ 并发数…...

关于设计模式、Java基础面试题

前言 之前为了准备面试&#xff0c;收集整理了一些面试题。 本篇文章更新时间2023年12月27日。 最新的内容可以看我的原文&#xff1a;https://www.yuque.com/wfzx/ninzck/cbf0cxkrr6s1kniv 设计模式 单例共有几种写法&#xff1f; 细分起来就有9种&#xff1a;懒汉&#x…...

Python爱心光波完整代码

文章目录 环境需求完整代码详细分析环境需求 python3.11.4PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境也可以运行,如果想发给好朋友的话需要这个库哦~)【注】 python环境搭建请见:https://want595.blog.csdn.net/arti…...

PowerShell Instal 一键部署gitea

gitea 前言 Gitea 是一个轻量级的 DevOps 平台软件。从开发计划到产品成型的整个软件生命周期,他都能够高效而轻松的帮助团队和开发者。包括 Git 托管、代码审查、团队协作、软件包注册和 CI/CD。它与 GitHub、Bitbucket 和 GitLab 等比较类似。 Gitea 最初是从 Gogs 分支而来…...

C语言——指针题目“指针探测器“

如果你觉得你指针学的自我感觉良好&#xff0c;甚至已经到达了炉火纯青的地步&#xff0c;不妨来试试这道题目&#xff1f; #include<stdio.h> int main() {char* c[] { "ENTER","NEW","POINT","FIRST" };char** cp[] { c 3…...

Hive讲课笔记:内部表与外部表

文章目录 一、导言二、内部表1.1 什么是内部表1.1.1 内部表的定义1.1.2 内部表的关键特性 1.2 创建与操作内部表1.2.1 创建并查看数据库1.2.2 在park数据库里创建student表1.2.3 在student表插入一条记录1.2.4 通过HDFS WebUI查看数据库与表 三、外部表2.1 什么是外部表2.2 创建…...

Docker本地部署开源浏览器Firefox并远程访问进行测试

文章目录 1. 部署Firefox2. 本地访问Firefox3. Linux安装Cpolar4. 配置Firefox公网地址5. 远程访问Firefox6. 固定Firefox公网地址7. 固定地址访问Firefox Firefox是一款免费开源的网页浏览器&#xff0c;由Mozilla基金会开发和维护。它是第一个成功挑战微软Internet Explorer浏…...

PHP:服务器端脚本语言的瑰宝

PHP&#xff08;Hypertext Preprocessor&#xff09;是一种广泛应用于服务器端编程的开源脚本语言&#xff0c;它以其简单易学、灵活性和强大的功能而成为Web开发的瑰宝。本文将深入介绍PHP的历史、特性、用途以及与生态系统的关系&#xff0c;为读者提供对这门语言全面的了解。…...

【MySQL】数据库并发控制:悲观锁与乐观锁的深入解析

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a; 数 据 库 ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 悲观锁&#xff08;Pessimistic Locking&#xff09;: 乐观锁&#xff08;Optimistic Locking&#xff09;: 总结&#x…...

作业--day38

1.定义一个Person类&#xff0c;包含私有成员&#xff0c;int *age&#xff0c;string &name&#xff0c;一个Stu类&#xff0c;包含私有成员double *score&#xff0c;Person p1&#xff0c;写出Person类和Stu类的特殊成员函数&#xff0c;并写一个Stu的show函数&#xff…...

pytest 的 fixture 固件机制

一、前置说明 固件(fixture)是一些函数,pytest 会在执行测试函数之前(或之后)加载运行它们。pytest 使用 fixture 固件机制来实现测试的前置和后置操作,可以方便地设置和共享测试环境。 二、操作步骤 1. 编写测试代码 atme/demos/demo_pytest_tutorials/test_pytest_…...

分布式技术之分布式计算Stream模式

文章目录 什么是 Stream&#xff1f;Stream 工作原理Storm 的工作原理 实时性任务主要是针对流数据的处理&#xff0c;对处理时延要求很高&#xff0c;通常需要有常驻服务进程&#xff0c;等待数据的随时到来随时处理&#xff0c;以保证低时延。处理流数据任务的计算模式&#…...

2023年12月GESP Python五级编程题真题解析

【五级编程题1】 【试题名称】&#xff1a;小杨的幸运数 【问题描述】 小杨认为&#xff0c;所有大于等于a的完全平方数都是他的超级幸运数。 小杨还认为&#xff0c;所有超级幸运数的倍数都是他的幸运数。自然地&#xff0c;小杨的所有超级幸运数也都是幸运数。 对于一个…...

探索Apache Commons Imaging处理图像

第1章&#xff1a;引言 大家好&#xff0c;我是小黑&#xff0c;咱们今天来聊聊图像处理。在这个数字化日益增长的时代&#xff0c;图像处理已经成为了一个不可或缺的技能。不论是社交媒体上的照片编辑&#xff0c;还是专业领域的图像分析&#xff0c;图像处理无处不在。而作为…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...