反转链表、链表的中间结点、合并两个有序链表(leetcode 一题多解)
一、反转链表
给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
思路一:翻转单链表指针方向
这里解释一下三个指针的作用:
n1:记录上一个节点,如果是第一个就指向空
n2:记录此节点的位置
n3:记录下一个节点的位置,让翻转后能找到下一个节点,防止丢失指针的地址
/** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/
struct ListNode* reverseList(struct ListNode* head) {if(head == NULL){return NULL;}//初始条件struct ListNode* n1 = NULL,*n2 = head,*n3 = n2->next;//结束条件while(n2){//迭代过程n2->next = n1;n1 = n2;n2 = n3;if(n3)n3 = n3->next;}return n1;
}
思路二:头插法
取原链表节点头插到新链表
/** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/
struct ListNode* reverseList(struct ListNode* head) {struct ListNode* cur = head;struct ListNode* newHead = NULL;while(cur){struct ListNode* next = cur->next;//头插cur->next = newHead;newHead = cur;cur = next;}return newHead;
}
二、链表的中间结点
给你单链表的头结点 head ,请你找出并返回链表的中间结点。
如果有两个中间结点,则返回第二个中间结点。
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
思路一:单指针法
-
时间复杂度:O(N*1.5),其中 N 是给定链表的结点数目。
-
空间复杂度:O(1),只需要常数空间存放变量和指针。
我们可以对链表进行两次遍历。第一次遍历时,我们统计链表中的元素个数 N;第二次遍历时,我们遍历到第 N/2 个元素(链表的首节点为第 0 个元素)时,将该元素返回即可。
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/
struct ListNode* middleNode(struct ListNode* head) {int n = 0;struct ListNode*cur = head;while(cur != NULL){++n;cur = cur->next;}int k = 0;cur = head;while(k < n/2){++k;cur = cur->next;}return cur;
}
思路二:快慢指针法
-
时间复杂度:O(N),其中 N 是给定链表的结点数目。
-
空间复杂度:O(1),只需要常数空间存放 slow 和 fast 两个指针。
我们可以优化思路一,用两个指针 slow 与 fast 一起遍历链表。slow 一次走一步,fast 一次走两步。那么当 fast 到达链表的末尾时,slow 必然位于中间。
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/
struct ListNode* middleNode(struct ListNode* head) {struct ListNode* slow = head,*fast = head;while(fast && fast->next){slow = slow->next;fast = fast->next->next;}return slow;
}
三、合并两个有序链表
将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
思路一(迭代法):
定义一个头指针和一个尾指针,从小到大依次尾插,直到一个链表为空时结束
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/
struct ListNode* mergeTwoLists(struct ListNode* l1, struct ListNode* l2) {if(l1 == NULL) return l2;if(l2 == NULL)return l1;struct ListNode* head = NULL, *tail = NULL;while(l1 != NULL && l2 != NULL){if(l1->val < l2->val){//尾插if(tail == NULL){head = tail = l1;}else{tail->next = l1;tail = tail->next;}l1 = l1->next;}else{if(tail == NULL){head = tail = l2;}else{tail->next = l2;tail = tail->next;}l2 = l2->next;}}if(l1)tail->next= l1;if(l2)tail->next= l2;return head;
}
优化一:
先确定头结点,然后再循环判断val大小,尾插
struct ListNode* mergeTwoLists(struct ListNode* l1, struct ListNode* l2) {if(l1 == NULL) return l2;if(l2 == NULL)return l1;struct ListNode* head = NULL, *tail = NULL;//先确定头节点if(l1->val < l2->val){head = tail =l1;l1 = l1->next;}else{head = tail =l2;l2 = l2->next;}while(l1 && l2){//尾插if(l1->val < l2->val){ tail->next = l1;l1 = l1->next;}else{tail->next = l2;l2 = l2->next;}tail = tail->next;}if(l1)tail->next= l1;if(l2)tail->next= l2;return head;
}
优化二:
设置一个哨兵位的头节点,然后再去尾插。
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/
struct ListNode* mergeTwoLists(struct ListNode* l1, struct ListNode* l2) {if(l1 == NULL) return l2;if(l2 == NULL)return l1;struct ListNode* head = NULL, *tail = NULL;//哨兵位的头节点head = tail = (struct ListNode*)malloc(sizeof(struct ListNode));while(l1 && l2){//尾插if(l1->val < l2->val){ tail->next = l1;l1 = l1->next;}else{tail->next = l2;l2 = l2->next;}tail = tail->next;}if(l1)tail->next= l1;if(l2)tail->next= l2;struct ListNode* first = head->next;free(head);return first;
}
思路二(递归法):
(这是题解中大佬的一个解法)以迭代的思路写递归,尤为惊人!!!
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/
struct ListNode* mergeTwoLists(struct ListNode* l1, struct ListNode* l2){/*if判断:1.如果l1为空,返回l22.如果l2为空,返回l13.如果l1的值小于l2,比较l1的next值和l2,并把值赋给l1的下一个;返回l14.反之,比较l1和l2的next值,并把值赋给l2的下一个;返回l2*/if (l1 == NULL) {return l2;} else if (l2 == NULL) {return l1;} else if (l1->val < l2->val) {l1->next = mergeTwoLists(l1->next, l2);return l1;} else {l2->next = mergeTwoLists(l1, l2->next);return l2;}
}
因为有缓冲区的存在,C语言在操作文件的时候,需要做刷新缓冲区或者在文件操作结束的时候关闭文件。
如果不做,可能导致读写文件的问题。
今天就先到这了!!!
看到这里了还不给博主扣个:
⛳️ 点赞☀️收藏 ⭐️ 关注!
你们的点赞就是博主更新最大的动力!
有问题可以评论或者私信!!!
相关文章:

反转链表、链表的中间结点、合并两个有序链表(leetcode 一题多解)
一、反转链表 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 思路一:翻转单链表指针方向 这里解释一下三个指针的作用: n1࿱…...

深度学习中的Dropout
1 Dropout概述 1.1 什么是Dropout 在2012年,Hinton在其论文《Improving neural networks by preventing co-adaptation of feature detectors》中提出Dropout。当一个复杂的前馈神经网络被训练在小的数据集时,容易造成过拟合。为了防止过拟合ÿ…...
MySQL 中的 ibdata1 文件过大如何处理?
ibdata1 是什么文件? ibdata1 是InnoDB的共有表空间,默认情况下会把表空间存放在一个名叫 ibdata1的文件中,日积月累会使该文件越来越大。 ibdata1 文件过大的解决办法 使用独享表空间,将表空间分别单独存放。MySQL开启独享表空…...

Weblogic反序列化远程命令执行(CVE-2019-2725)
漏洞描述: CVE-2019-2725是一个Oracle weblogic反序列化远程命令执行漏洞,这个漏洞依旧是根据weblogic的xmldecoder反序列化漏洞,通过针对Oracle官网历年来的补丁构造payload来绕过。 复现过程: 1.访问ip:port 2.可…...
鸿蒙组件数据传递:ui传递、@prop、@link
鸿蒙组件数据传递方式有很多种,下面详细罗列一下: 注意: 文章内名词解释: 正向:父变子也变 逆向:子变父也变 **第一种:直接传递 - 特点:1、任何数据类型都可以传递 2、不能响应式…...

ubuntu 开机自报IP地址(用于无屏幕小车-远程连接)
目录 1.环境安装2.代码3.打包成可执行文件4.开启开机自启 1.环境安装 sudo apt-get install espeak #先安装这个库 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyttsx32.90 #再安装pyttsx3 pyinstaller pip install -i https://pypi.tuna.tsinghua.edu.cn/si…...
Angular——:host 和::deep
在Angular中,:host和::ng-deep是用于在组件样式中选择和修改宿主元素和子组件的特殊选择器。 :host是一个CSS伪类选择器,用于选择当前组件的宿主元素。它常用于在组件样式中应用样式到组件外部的宿主元素上。例如: :host {background-color:…...

键盘字符(#键)显示错误
当屏幕上显示的键与键盘上按下的键不同时,尤其是 # 键。大多数情况下,此错误是由于 raspbian 和 NOOBS 软件的默认英国键盘配置所致。 解决方案: 要解决此问题,您需要将配置更改为您自己的键盘或语言的配置。这可以通过转到树莓派…...

geemap学习笔记037:分析地理空间数据--坐标格网和渔网
前言 坐标格网(Coordinate Grid)简称“坐标网”,是按一定纵横坐标间距,在地图上划分的格网,坐标网是任何地图上不可缺少的要素之一。下面将详细介绍一下坐标格网和渔网。 1 导入库并显示地图 import ee import geem…...

Bluetooth Mesh 入门学习干货,参考Nordic资料(更新中)
蓝牙网状网络(Bluetooth mesh)概念 概述 蓝牙Mesh Profile | Bluetooth Technology Website规范(Mesh v1.1 后改名Mesh ProtocolMesh Protocol | Bluetooth Technology WebsiteMesh Protocol)是由蓝牙技术联盟(Bluetooth SIG)开…...

磁盘管理 :逻辑卷、磁盘配额
一 LVM可操作的对象:①完成的磁盘 ②完整的分区 PV 物理卷 VG 卷组 LV 逻辑卷 二 LVM逻辑卷管理的命令 三 建立LVM逻辑卷管理 虚拟设置-->一致下一步就行-->确认 echo "- - -" > /sys/class/scsi_host/host0/scan;echo "- -…...

GitHub教程-自定义个人页制作
GitHub是全球最大的代码托管平台,除了存放代码,它还允许用户个性化定制自己的主页,展示个人特色、技能和项目。本教程旨在向GitHub用户展示如何制作个性化主页,同时,介绍了GitHub Actions的应用,可以自动化…...

Frappe Charts:数据可视化的强大工具
一、产品简介: 一个简单、零依赖、响应式的 开源SVG 图表库。这个图表库无论是数据更新还是屏幕大小变化,都能快速响应并更新图表。数据生成和悬停查看都有舒服的交互动效,体验感很好。不仅支持配置颜色,外观定制也很方便。还支持…...

【Vulnhub 靶场】【Hms?: 1】【简单】【20210728】
1、环境介绍 靶场介绍:https://www.vulnhub.com/entry/hms-1,728/ 靶场下载:https://download.vulnhub.com/hms/niveK.ova 靶场难度:简单 发布日期:2021年07月28日 文件大小:2.9 GB 靶场作者:niveK 靶场系…...
浅谈C4模型
C4模型(C4 Model)是一种用于描述软件系统架构的轻量级模型,其目标是通过简化、清晰和易于理解的方式来表达系统的不同层次的架构信息。C4代表了“上下文”(Context)、“容器”(Container)、“组…...

SeaTunnel流处理同步MySQL数据至ClickHouse
ClickHouse是一种OLAP类型的列式数据库管理系统,ClickHouse完美的实现了OLAP和列式数据库的优势,因此在大数据量的分析处理应用中ClickHouse表现很优秀。 SeaTunnel是一个分布式、高性能、易扩展、用于海量数据同步和转化的数据集成平台。用户只需要配置…...

Arduino stm32 USB CDC虚拟串口使用示例
Arduino stm32 USB CDC虚拟串口使用示例 📍相关篇《STM32F401RCT6基于Arduino框架点灯程序》🔖本开发环境基于VSCode PIO🌿验证芯片:STM32F401RC⌛USB CDC引脚: PA11、 PA12🔧platformio.ini配置信息&…...

Java开发框架和中间件面试题(4)
27.如何自定义Spring Boot Starter? 1.实现功能 2.添加Properties 3.添加AutoConfiguration 4.添加spring.factory 在META INF下创建spring.factory文件 6.install 28.为什么需要spring boot maven plugin? spring boot maven plugin 提供了一些像jar一样打包…...
【腾讯云中间件】2023年热门文章集锦
各位读者,大家好! 光阴似箭,日月如梭,仿佛冬奥会的盛况还在眼前,新的一年却即将到来。在过去的一年里,我们见证了腾讯云中间件在产品升级与创新方面的显著进步,包括消息队列TDMQ品牌全新升级和…...
SpringBoot 实现订单30分钟自动取消的策略
简介 在电商和其他涉及到在线支付的应用中,通常需要实现一个功能:如果用户在生成订单后的一定时间内未完成支付,系统将自动取消该订单。 本文将详细介绍基于Spring Boot框架实现订单30分钟内未支付自动取消的几种方案,并提供实例…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...