当前位置: 首页 > news >正文

大模型系列:OpenAI使用技巧_使用OpenAI进行K-means聚类

文章目录

      • 1. 使用K-means算法找到聚类
      • 2. 聚类中的文本样本和聚类的命名让我们展示每个聚类中的随机样本。

我们使用一个简单的k-means算法来演示如何进行聚类。聚类可以帮助发现数据中有价值的隐藏分组。数据集是在 Get_embeddings_from_dataset Notebook中创建的。

# 导入必要的库
import numpy as np
import pandas as pd
from ast import literal_eval# 数据文件路径
datafile_path = "./data/fine_food_reviews_with_embeddings_1k.csv"# 读取csv文件为DataFrame格式
df = pd.read_csv(datafile_path)# 将embedding列中的字符串转换为numpy数组
df["embedding"] = df.embedding.apply(literal_eval).apply(np.array)# 将所有的embedding数组按行堆叠成一个矩阵
matrix = np.vstack(df.embedding.values)# 输出矩阵的形状
matrix.shape
(1000, 1536)

1. 使用K-means算法找到聚类

我们展示了K-means的最简单用法。您可以选择最适合您用例的聚类数量。

# 导入KMeans聚类算法
from sklearn.cluster import KMeans# 设置聚类数目
n_clusters = 4# 初始化KMeans算法,设置聚类数目、初始化方法和随机种子
kmeans = KMeans(n_clusters=n_clusters, init="k-means++", random_state=42)# 使用KMeans算法对数据进行聚类
kmeans.fit(matrix)# 获取聚类标签
labels = kmeans.labels_# 将聚类标签添加到数据框中
df["Cluster"] = labels# 按照聚类标签对数据框进行分组,计算每个聚类的平均分数,并按照平均分数排序
df.groupby("Cluster").Score.mean().sort_values()
/Users/ted/.virtualenvs/openai/lib/python3.9/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warningwarnings.warn(Cluster
0    4.105691
1    4.191176
2    4.215613
3    4.306590
Name: Score, dtype: float64
# 导入必要的库
from sklearn.manifold import TSNE
import matplotlib
import matplotlib.pyplot as plt# 初始化t-SNE模型,设置参数
tsne = TSNE(n_components=2, perplexity=15, random_state=42, init="random", learning_rate=200)# 使用t-SNE模型对数据进行降维
vis_dims2 = tsne.fit_transform(matrix)# 提取降维后的数据的x和y坐标
x = [x for x, y in vis_dims2]
y = [y for x, y in vis_dims2]# 针对每个类别,绘制散点图,并标记类别的平均值
for category, color in enumerate(["purple", "green", "red", "blue"]):# 提取属于当前类别的数据的x和y坐标xs = np.array(x)[df.Cluster == category]ys = np.array(y)[df.Cluster == category]# 绘制散点图plt.scatter(xs, ys, color=color, alpha=0.3)# 计算当前类别的平均值avg_x = xs.mean()avg_y = ys.mean()# 标记平均值plt.scatter(avg_x, avg_y, marker="x", color=color, s=100)# 设置图表标题
plt.title("Clusters identified visualized in language 2d using t-SNE")
Text(0.5, 1.0, 'Clusters identified visualized in language 2d using t-SNE')

在二维投影中对聚类进行可视化。在这次运行中,绿色聚类(#1)似乎与其他聚类非常不同。让我们看一下每个聚类的几个样本。

2. 聚类中的文本样本和聚类的命名让我们展示每个聚类中的随机样本。

我们将使用text-davinci-003来为聚类命名,基于从该聚类中随机抽取的5个评论样本。

# 导入openai模块import openai# 每个聚类组中的评论数量
rev_per_cluster = 5# 遍历每个聚类组
for i in range(n_clusters):# 输出聚类组的主题print(f"Cluster {i} Theme:", end=" ")# 选取属于该聚类组的评论,并将它们合并成一个字符串reviews = "\n".join(df[df.Cluster == i].combined.str.replace("Title: ", "").str.replace("\n\nContent: ", ":  ").sample(rev_per_cluster, random_state=42).values)# 使用openai模块对选取的评论进行主题分析response = openai.Completion.create(engine="text-davinci-003",prompt=f'What do the following customer reviews have in common?\n\nCustomer reviews:\n"""\n{reviews}\n"""\n\nTheme:',temperature=0,max_tokens=64,top_p=1,frequency_penalty=0,presence_penalty=0,)# 输出主题分析结果print(response["choices"][0]["text"].replace("\n", ""))# 选取属于该聚类组的样本行,并输出它们的得分、摘要和文本内容sample_cluster_rows = df[df.Cluster == i].sample(rev_per_cluster, random_state=42)for j in range(rev_per_cluster):print(sample_cluster_rows.Score.values[j], end=", ")print(sample_cluster_rows.Summary.values[j], end=":   ")print(sample_cluster_rows.Text.str[:70].values[j])# 输出分隔符print("-" * 100)
Cluster 0 Theme:  All of the reviews are positive and the customers are satisfied with the product they purchased.
5, Loved these gluten free healthy bars, saved $$ ordering on Amazon:   These Kind Bars are so good and healthy & gluten free.  My daughter ca
1, Should advertise coconut as an ingredient more prominently:   First, these should be called Mac - Coconut bars, as Coconut is the #2
5, very good!!:   just like the runts<br />great flavor, def worth getting<br />I even o
5, Excellent product:   After scouring every store in town for orange peels and not finding an
5, delicious:   Gummi Frogs have been my favourite candy that I have ever tried. of co
----------------------------------------------------------------------------------------------------
Cluster 1 Theme:  All of the reviews are about pet food.
2, Messy and apparently undelicious:   My cat is not a huge fan. Sure, she'll lap up the gravy, but leaves th
4, The cats like it:   My 7 cats like this food but it is a little yucky for the human. Piece
5, cant get enough of it!!!:   Our lil shih tzu puppy cannot get enough of it. Everytime she sees the
1, Food Caused Illness:   I switched my cats over from the Blue Buffalo Wildnerness Food to this
5, My furbabies LOVE these!:   Shake the container and they come running. Even my boy cat, who isn't 
----------------------------------------------------------------------------------------------------
Cluster 2 Theme:  All of the reviews are positive and express satisfaction with the product.
5, Fog Chaser Coffee:   This coffee has a full body and a rich taste. The price is far below t
5, Excellent taste:   This is to me a great coffee, once you try it you will enjoy it, this 
4, Good, but not Wolfgang Puck good:   Honestly, I have to admit that I expected a little better. That's not 
5, Just My Kind of Coffee:   Coffee Masters Hazelnut coffee used to be carried in a local coffee/pa
5, Rodeo Drive is Crazy Good Coffee!:   Rodeo Drive is my absolute favorite and I'm ready to order more!  That
----------------------------------------------------------------------------------------------------
Cluster 3 Theme:  All of the reviews are about food or drink products.
5, Wonderful alternative to soda pop:   This is a wonderful alternative to soda pop.  It's carbonated for thos
5, So convenient, for so little!:   I needed two vanilla beans for the Love Goddess cake that my husbands 
2, bot very cheesy:   Got this about a month ago.first of all it smells horrible...it tastes
5, Delicious!:   I am not a huge beer lover.  I do enjoy an occasional Blue Moon (all o
3, Just ok:   I bought this brand because it was all they had at Ranch 99 near us. I
----------------------------------------------------------------------------------------------------

重要的是要注意,聚类不一定与您打算使用它们的目的完全匹配。更多的聚类将关注更具体的模式,而较少的聚类通常会关注数据中最大的差异。

相关文章:

大模型系列:OpenAI使用技巧_使用OpenAI进行K-means聚类

文章目录 1. 使用K-means算法找到聚类2. 聚类中的文本样本和聚类的命名让我们展示每个聚类中的随机样本。 我们使用一个简单的k-means算法来演示如何进行聚类。聚类可以帮助发现数据中有价值的隐藏分组。数据集是在 Get_embeddings_from_dataset Notebook中创建的。 # 导入必要…...

共享单车之数据分析

文章目录 第1关&#xff1a;统计共享单车每天的平均使用时间第2关&#xff1a;统计共享单车在指定地点的每天平均次数第3关&#xff1a;统计共享单车指定车辆每次使用的空闲平均时间第4关&#xff1a;统计指定时间共享单车使用次数第5关&#xff1a;统计共享单车线路流量 第1关…...

Spring的Bean你了解吗

Bean的配置 Spring容器支持XML(常用)和Properties两种格式的配置文件 Spring中XML配置文件的根元素是,中包含了多个子元素&#xff0c;每个子元素定义了一个Bean,并描述了该Bean如何装配到Spring容器中 元素包含了多个属性以及子元素&#xff0c;常用属性及子元素如下所示 i…...

MongoDB聚合:$merge 阶段(1)

$merge的用途是把聚合管道产生的结果写入指定的集合&#xff0c;有时候可以用$merge来做物化视图。需要注意&#xff0c;$meger操作必须是聚合管道的最后一个阶段。具体功能有&#xff1a; 能够输出到当前或不同的数据库能够输出到正在聚合的集合&#xff08;慎重&#xff1a;…...

2. 云原生实战之kubesphere搭建

文章目录 机器介绍centos基本配置安装 VMware Tools设置静态ip关闭防火墙关闭SELinux开启时间同步配置host和hostname 安装kubesphere依赖项安装配置文件准备执行安装命令 机器介绍 在ESXI中准备虚拟机&#xff0c;部署参考官网&#xff1a;https://kubesphere.io/zh/ CentOs…...

main参数传递、反汇编、汇编混合编程

week03 一、main参数传递二、反汇编三、汇编混合编程 一、main参数传递 参考 http://www.cnblogs.com/rocedu/p/6766748.html#SECCLA 在Linux下完成“求命令行传入整数参数的和” 注意C中main: int main(int argc, char *argv[]), 字符串“12” 转为12&#xff0c;可以调用atoi…...

前后端分离nodejs+vue医院预约挂号系统6nrhh

医院预约挂号系统主要有管理员、用户和医生三个功能模块。以下将对这三个功能的作用进行详细的剖析。 运行软件:vscode 前端nodejsvueElementUi 语言 node.js 框架&#xff1a;Express/koa 前端:Vue.js 数据库&#xff1a;mysql 开发软件&#xff1a;VScode/webstorm/hbuiderx均…...

在pytorch中,读取GPU上张量的数值 (数据从GPU到CPU) 的几种常用方法

1、.cpu() 方法&#xff1a; 使用 .cpu() 方法可以将张量从 GPU 移动到 CPU。这是一种简便的方法&#xff0c;常用于在进行 CPU 上的操作之前将数据从 GPU 取回 import torch# 在 GPU 上创建一个张量 gpu_tensor torch.tensor([1, 2, 3], devicecuda)# 将 GPU 上的张…...

【mysql】—— 表的内连和外连

在MySQL中&#xff0c;内连&#xff08;INNER JOIN&#xff09;和外连&#xff08;OUTER JOIN&#xff09;是用于联接多个表的操作。接下来&#xff0c;我分别给大家介绍下二者。 目录 &#xff08;一&#xff09;内连接 1、什么叫内连接 2、语法格式 3、案例&#xff1a;显…...

VSCode远程开发配置

目录 概要远程开发插件安装开始连接SSH无密码登录开发环境配置 概要 现在很多公司都是直接远程到服务器上写代码&#xff0c;使用远程开发&#xff0c;可以在与生产环境相同的环境中开发、测试和部署代码&#xff0c;减少因环境不同而导致的问题。当下VSCode远程开发是支持的比…...

复数值神经网络可能是深度学习的未来

一、说明 复数这种东西,在人的头脑中似乎抽象、似乎复杂,然而,对于计算机来说,一点也不抽象,不复杂,那么,将复数概念推广到神经网络会是什么结果呢?本篇介绍国外的一些同行的尝试实践,请我们注意观察他们的进展。...

【C语言】数据结构——排序二(快排)

&#x1f497;个人主页&#x1f497; ⭐个人专栏——数据结构学习⭐ &#x1f4ab;点击关注&#x1f929;一起学习C语言&#x1f4af;&#x1f4ab; 目录 导读&#xff1a;数组打印与交换1. 交换排序1.1 基本思想&#xff1a;1.2 冒泡与快排的异同 2. 冒泡排序2.1 基本思想2.2 …...

企业私有云容器化架构

什么是虚拟化: 虚拟化&#xff08;Virtualization&#xff09;技术最早出现在 20 世纪 60 年代的 IBM 大型机系统&#xff0c;在70年代的 System 370 系列中逐渐流行起来&#xff0c;这些机器通过一种叫虚拟机监控器&#xff08;Virtual Machine Monitor&#xff0c;VMM&#x…...

SpringBoot+modbus4j实现ModebusTCP通讯读取数据

场景 Windows上ModbusTCP模拟Master与Slave工具的使用&#xff1a; Windows上ModbusTCP模拟Master与Slave工具的使用-CSDN博客 Modebus TCP Modbus由MODICON公司于1979年开发&#xff0c;是一种工业现场总线协议标准。 1996年施耐德公司推出基于以太网TCP/IP的Modbus协议&…...

Linux性能优化全景指南

Part1 Linux性能优化 1、性能优化性能指标 高并发和响应快对应着性能优化的两个核心指标&#xff1a;吞吐和延时 应用负载角度&#xff1a;直接影响了产品终端的用户体验系统资源角度&#xff1a;资源使用率、饱和度等 性能问题的本质就是系统资源已经到达瓶颈&#xff0c;但…...

树莓派 ubuntu20.04下 python调讯飞的语音API,语音识别和语音合成

目录 1.环境搭建2.去讯飞官网申请密钥3.语音识别&#xff08;sst&#xff09;4.语音合成&#xff08;tts&#xff09;5.USB声卡可能报错 1.环境搭建 #环境说明&#xff1a;(尽量在ubuntu下使用, 本次代码均在该环境下实现) sudo apt-get install sox # 安装语音播放软件 pip …...

分布式系统架构设计之分布式系统实践案例和未来展望

分布式系统在过去的几十年里经历了长足的发展&#xff0c;从最初的简单分布式架构到今天的微服务、云原生等先进架构&#xff0c;取得了丰硕的成果。本文将通过实际案例分享分布式系统的架构实践&#xff0c;并展望未来可能的发展方向。 一、实践案例 1、微服务化实践 背景 …...

【办公软件】Excel双坐标轴图表

在工作中整理测试数据&#xff0c;往往需要一个图表展示两个差异较大的指标。比如共有三个数据&#xff0c;其中两个是要进行对比的温度值&#xff0c;另一个指标是两个温度的差值&#xff0c;这个差值可能很小。 举个实际的例子&#xff1a;数据如下所示&#xff0c;NTC检测温…...

彻底理解前端安全面试题(1)—— XSS 攻击,3种XSS攻击详解,建议收藏(含源码)

前言 前端关于网络安全看似高深莫测&#xff0c;其实来来回回就那么点东西&#xff0c;我总结一下就是 3 1 4&#xff0c;3个用字母描述的【分别是 XSS、CSRF、CORS】 一个中间人攻击。当然 CORS 同源策略是为了防止攻击的安全策略&#xff0c;其他的都是网络攻击。除了这…...

UE5.1_AI随机漫游

UE5.1_AI随机漫游 目录 UE5.1_AI随机漫游 AI随机漫游方法 方法1:AI角色蓝图直接写方法...

智慧城市新型基础设施建设综合方案:文件全文52页,附下载

关键词&#xff1a;智慧城市建设方案&#xff0c;智慧城市发展的前景和趋势&#xff0c;智慧城市项目方案&#xff0c;智慧城市管理平台&#xff0c;数字化城市&#xff0c;城市数字化转型 一、智慧城市新基建建设背景 1、城市化进程加速&#xff1a;随着城市化进程的加速&am…...

GitHub Copilot 终极详细介绍

编写代码通常是一项乏味且耗时的任务。现代开发人员一直在寻找新的方法来提高编程的生产力、准确性和效率。 像 GitHub Copilot 这样的自动代码生成工具可以使这成为可能。 GitHub Copilot 到底是什么&#xff1f; GitHub Copilot 于 2021 年 10 月推出&#xff0c;是 GitHub 的…...

LeetCode第63题 - 不同路径 II

题目 解答 class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {int m obstacleGrid.length;int n obstacleGrid[0].length;if (obstacleGrid[0][0] 1) {return 0;}if (obstacleGrid[m - 1][n - 1] 1) {return 0;}int[][] dp new int[m][n];dp…...

python+django网上银行业务综合管理系统vue_bvj8b

本课题主要研究如何用信息化技术改善传统网上银行综合管理行业的经营和管理模式&#xff0c;简化网上银行综合管理的难度&#xff0c;根据管理实际业务需求&#xff0c;调研、分析和编写系统需求文档&#xff0c;设计编写符合银行需要的系统说明书&#xff0c;绘制数据库结构模…...

【软件工程】走进瀑布模型:传统软件开发的经典之路

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a; 软件工程 ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言&#xff1a; 正文 主要阶段&#xff1a; 优点&#xff1a; 缺点&#xff1a; 应用范围&#xff1a; 结语 我的其他博客 前言&am…...

两个字符串间的最短路径问题 (100%用例)C卷 (JavaPythonNode.jsC语言C++)

给定两个字符串,分别为字符串A与字符串B。例如A字符串为ABCABBA,B字符串为CBABAC可以得到下图m*n的二维数组,定义原点为(0,0),终点为(m,n),水平与垂直的每一条边距离为1,映射成坐标系如下图 从原点(0,0)到(0,A)为水平边,距离为1,从(0,A)到(A,C)为垂直边,距离为1;假设两…...

通过ADB来实现脚本来控制手机

ADB 简介 adb的全称为Android Debug Bridge,安卓调试桥,可以通过调试命令来控制手机,诸如开机,关机等按键控制;或者启动,关闭应用;异或进行触摸模拟. 通过学习adb,可以实现简单的脚本控制,最大的特点是不需要root,对于普通手机都可以进行,帮助我们完成一些简单的重复性事件,…...

机器学习之K-means聚类

概念 K-means是一种常用的机器学习算法,用于聚类分析。聚类是一种无监督学习方法,它试图将数据集中的样本划分为具有相似特征的组(簇)。K-means算法的目标是将数据集划分为K个簇,其中每个样本属于与其最近的簇中心。 以下是K-means算法的基本步骤: 选择簇的数量(K值)…...

SSH 端口转发:如何将服务绑定到本地 IP 地址

在日常工作中&#xff0c;我们经常需要访问位于远程服务器上的服务&#xff0c;如数据库、Web 应用程序或其他类型的服务器。直接访问这些服务可能会因为安全限制或网络配置而变得复杂或不可能。这时&#xff0c;SSH 端口转发就成了我们的得力助手。在本篇博客中&#xff0c;我…...

回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)

回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 &#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 &#xff08;…...

网站模板名称/靠谱seo外包定制

1.引言距离矩阵是一个包含一组点两两距离的矩阵&#xff08;即 二维数组&#xff09;。因此给定 个欧几里得空间中的点&#xff0c;其距离矩阵就是一个非负实数作为元素的 的对称矩阵。在机器学习中距离矩阵都计算非常常见&#xff08;只要涉及距离计算&#xff0c;基本都需要计…...

网站幕布拍照什么样子的/视频推广

最近有一段时间&#xff0c;由于项目需要实现SQL Server数据库的异地备份。刚开始想到的是使用数据库的同步&#xff0c;在两台服务器上&#xff0c;安装SQL Server&#xff0c;然后建立数据库同步&#xff0c;再分别为每个服务器建立数据库维护计划&#xff0c;发现这样处理比…...

php做的网站好么/河南网站优化

题意&#xff1a;给你 n个点 m条边 每条边有些公司支持 问 a点到b点的路径有哪些公司可以支持 这里是一条路径中要每段路上都要有该公司支持 才算合格的一个公司 分析&#xff1a;map[i][j] 等于 i直接到 j 的 公司数,加上i经过中间节点到 j 的 公司数 因为每两个站点间的…...

深圳做模板网站/真实的网站制作

在HT for Web提供了一下几种常用的Editor&#xff0c;分别是&#xff1a; slider&#xff1a;拉条color picker&#xff1a;颜色选择器enum&#xff1a;枚举类型boolean&#xff1a;真假编辑器string&#xff1a;普通的文本编辑器除了这几种常用编辑器之外&#xff0c;用户还可…...

做网站的规范/哈尔滨seo优化公司

文章目录相关文章相关工具蓝牙hid协议一、HID Reports :Input Reports,输入报告Output Reports,输出报告Feature Reports,特征报告二、HID channel三、HID Report ModesBluetooth HID ProtocolBoot protocol 和 report protocol 的区别&#xff1a;四、Bluetooth HID Protocol …...

钱多网站/推广小程序

matlab中矩阵LDLT分解与Cholesky分解矩阵LDLT分解与Cholesky分解&#xff1a;矩阵的LDLT消去函数的程序代码&#xff1a;%矩阵的LDLT分解function [s,l,d]ldlt(a)s1;l0;d0;%判断矩阵是否对称if a~a %矩阵不对称&#xff0c;输出错误信息 s0;else bdiag(a); %列向量b存放矩阵a的…...