当前位置: 首页 > news >正文

轮廓检测与处理

轮廓检测

先将图像转换成二值

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 灰度图
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)  # 变为二值,大于127置为255,小于100置为0.

使用cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)函数读取轮廓

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# contours:轮廓信息   hierarchy:层级
# cv2.RETR_TREE:检测所有轮廓,并重构嵌套轮廓的整个层次
# cv2.CHAIN_APPROX_NONE:freeman链码方式输出轮廓,所有其他方式输出多边形(顶点的序列)

绘图

-1表示画出全部轮廓,0,1,2依次为第1,2,3个轮廓
(0, 0, 255)bgr表示画红色
2表示线条宽度

draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
# -1表示画出全部轮廓,(0, 0, 255)bgr表示画红色,2表示线条宽度

结果

show.cv_show('iron', img)
show.cv_show('thresh', thresh)
show.cv_show('res', res)

原图
原图
二值图
二值图
轮廓图
轮廓

轮廓特征

先提取另一幅图的轮廓

img2 = cv2.imread('duobianxing.png')
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)  # 灰度图
ret2, thresh2 = cv2.threshold(gray2, 127, 255, cv2.THRESH_BINARY)  # 变为二值,大于127置为255,小于100置为0.
contours2, hierarchy2 = cv2.findContours(thresh2, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
draw_img2 = img2.copy()
res2 = cv2.drawContours(draw_img2, contours2, -1, (0, 0, 255), 2)  # -1表示画出所有轮廓
show.cv_show('duobianx', img2)
show.cv_show('res', res2)

在这里插入图片描述
在这里插入图片描述
提取第一个轮廓

cnt = contours2[0]

面积

area = cv2.contourArea(cnt) 

在这里插入图片描述

周长

length = cv2.arcLength(cnt, True)  # 周长,True表示闭合

在这里插入图片描述

轮廓近似

设置一个阈值,越小越接近原轮廓

yuzhi = 0.01*cv2.arcLength(cnt, True)  # 阈值
approx = cv2.approxPolyDP(cnt, yuzhi, True)
draw_img2 = img2.copy()
res2 = cv2.drawContours(draw_img2, [approx], -1, (0, 0, 255), 2)
show.cv_show('res2', res2)

阈值为0.1倍周长时
在这里插入图片描述
阈值为0.01倍周长时
在这里插入图片描述

边界矩形

x, y, w, h = cv2.boundingRect(cnt)
ju = cv2.rectangle(img2, (x, y), (x+w, y+h), (0, 255, 0), 2)
show.cv_show('ju', ju)

在这里插入图片描述
轮廓面积与边界矩形面积之比

area2 = cv2.contourArea(cnt)
ju_area = w * h
bi = float(area2) / ju_area
print('轮廓面积与边界矩形面积之比', bi)

在这里插入图片描述

外接圆

(x, y), radius = cv2.minEnclosingCircle(cnt)
center = (int(x), int(y))
radius = int(radius)
yuan = cv2.circle(img2, center, radius, (0, 255, 0), 2)
show.cv_show('yuan', yuan)

在这里插入图片描述

相关文章:

轮廓检测与处理

轮廓检测 先将图像转换成二值 gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 灰度图 ret, thresh cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 变为二值,大于127置为255,小于100置为0.使用cv2.findContours(thresh, cv2.RETR_TREE, cv2.…...

跟着LearnOpenGL学习11--材质

文章目录 一、材质二、设置材质三、光的属性四、不同的光源颜色 一、材质 在现实世界里,每个物体会对光产生不同的反应。 比如,钢制物体看起来通常会比陶土花瓶更闪闪发光,一个木头箱子也不会与一个钢制箱子反射同样程度的光。 有些物体反…...

Java guava partition方法拆分集合自定义集合拆分方法

日常开发中&#xff0c;经常遇到拆分集合处理的场景&#xff0c;现在记录2中拆分集合的方法。 1. 使用Guava包提供的集合操作工具栏 Lists.partition()方法拆分 首先&#xff0c;引入maven依赖 <dependency><groupId>com.google.guava</groupId><artifa…...

GLTF编辑器-位移贴图实现破碎的路面

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 位移贴图是一种可以用于增加模型细节和形状的贴图。它能够在渲染时针…...

多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测

多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测 目录 多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现SSA-BiLSTM麻雀算法优化…...

docker安装Nacos和Rabbitmq

一、安装Nacos 首先需要拉取对应的镜像文件&#xff1a;&#xff08;切换版本加上对应版本号即可&#xff0c;默认最新版&#xff09; docker pull nacos/nacos-server 接着挂载目录&#xff1a; mkdir -p /mydata/nacos/logs/ #新建logs目录 mkdir -p …...

Android MVC 写法

前言 Model&#xff1a;负责数据逻辑 View&#xff1a;负责视图逻辑 Controller&#xff1a;负责业务逻辑 持有关系&#xff1a; 1、View 持有 Controller 2、Controller 持有 Model 3、Model 持有 View 辅助工具&#xff1a;ViewBinding 执行流程&#xff1a;View >…...

网络层解读

基本介绍 概述 当两台主机之间的距离较远(如相隔几十或几百公里&#xff0c;甚至几千公里)时&#xff0c;就需要另一种结构的网络&#xff0c;即广域网。广域网尚无严格的定义。通常是指覆盖范围很广(远超过一个城市的范围)的长距离的单个网络。它由一些结点交换机以及连接这些…...

js for和forEach 跳出循环 替代方案

1 for循环跳出 for(let i0;i<10;i){if(i5){break;}console.log(i) }在函数中也可以return跳出循环 function fn(){for(let i0;i<10;i){if(i5){return;}console.log(i)} } fn()for ... of效果同上 2 forEach循环跳出 break会报错 [1,2,3,4,5,6,7,8,9,10].forEach(i>…...

如何使用ArcGIS Pro自动矢量化建筑

相信你在使用ArcGIS Pro的时候已经发现了一个问题&#xff0c;那就是ArcGIS Pro没有ArcScan&#xff0c;在ArcGIS Pro中&#xff0c;Esri确实已经移除了ArcScan&#xff0c;没有了ArcScan我们如何自动矢量化地图&#xff0c;从地图中提取建筑等要素呢&#xff0c;这里为大家介绍…...

交互式笔记Jupyter Notebook本地部署并实现公网远程访问内网服务器

最近&#xff0c;我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念&#xff0c;而且内容风趣幽默。我觉得它对大家可能会有所帮助&#xff0c;所以我在此分享。点击这里跳转到网站。 文章目录 1.前言2.Jupyter Notebook的安装2.1 Jupyter Notebook下…...

41.坑王驾到第七期:uniapp开发微信小程序引用组件时报错!

一、错误再现 页面login引用了一个组件register&#xff0c;运行至小程序开发工具报错。 xxx.js 已被代码依赖分析忽略&#xff0c;无法被其他模块引用。 二、解决办法 在微信小程序的配置文件中找到setting节点&#xff0c;增加两个配置项。 “ignoreDevUnusedFiles”: fa…...

挂载与解挂载

一. 挂载 1.什么是挂载 将系统中的文件夹和磁盘做上关联&#xff0c;使用文件夹等于使用磁盘 2.mount 2.1 格式 mount [ -t 类型 ] 存储设备 挂载点目录 mount -o loop ISO镜像文件 挂载点目录 注意&#xff1a;指明要挂载的设备 设备文件&#xff1a;例如:/dev/sda5 卷…...

UGUI Panel的显示和隐藏优化

unity UI如何开启&#xff08;显示&#xff09;或者关闭&#xff08;隐藏&#xff09;Panel界面&#xff0c;相信大家都是知道的&#xff0c;但是如何做最好呢&#xff1f; 可能大家一般开启/关闭界面的方法就是直接SetActive吧。这样做通常是可以的&#xff0c;简答快速地解决…...

Linux:多文件编辑

多文件编辑 1.使用vim编辑多个文件 编辑多个文件有两种形式&#xff0c;一种是在进入vim前使用的参数就是多个文件。另一种就是进入vim后再编辑其他的文件。 同时创建两个新文件并编辑 $ vim 1.txt 2.txt默认进入1.txt文件的编辑界面 命令行模式下输入:n编辑2.txt文件&…...

模式识别与机器学习-概率图模型

模式识别与机器学习-概率图模型 概率图模型三大基本问题表示推断学习 有向概率图模型例子三种经典的图 HMMViterbi 算法 谨以此博客作为复习期间的记录 概率图模型三大基本问题 概率图模型通常涉及三个基本问题&#xff0c;即表示&#xff08;Representation&#xff09;、推…...

RK3566 ANDROID 11 平台上适配移远EC200A

适配前理清楚一下调试的流程: 1.该模块为LGA封装,需要控制上电时序模块才能正常上电工作: 2.模块供电正常后,读取模组的PID 和VID 并将其ID添加到内核里面,确保USB转Serial端口能够正常生成: 3.生成ttyUSB0~ttyUSB2端口后,确保rild进程正常启动,能够正常加载ril库; …...

存算分离降本增效,StarRocks 助力聚水潭 SaaS 业务服务化升级

作者&#xff1a;聚水潭数据研发负责人 溪竹 聚水潭是中国领先的 SaaS 软件服务商&#xff0c;核心产品是电商 ERP&#xff0c;协同350余家电商平台&#xff0c;为商家提供综合的信息化、数字化解决方案。公司是偏线下商家侧的 toB 服务商&#xff0c;员工人数超过3500&#xf…...

Linux 内核学习笔记: hlist 的理解

前言 最近阅读 Linux 内核时&#xff0c;遇到了 hlist&#xff0c;这个 hlist 用起来像是普通的链表&#xff0c;但是为何使用 hlist&#xff0c;hlist 是怎么工作的&#xff1f; 相关代码 hlist_add_head(&clk->clks_node, &core->clks); /*** clk_core_link_…...

几种设计模式介绍

前言 设计模式是一种用于解决软件开发中常见问题的通用解决方案&#xff0c;它可以提高代码的可读性、可维护性和可复用性。前端开发中也有很多应用设计模式的场景&#xff0c;比如处理异步操作、优化性能、封装复杂逻辑等。 前端开发中常见的设计模式有以下几种&#xff1a; …...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...