AI客服的评分机制及自动化测试
智能客服的评分机制及自动化测试
使用pytest来编写智能客服的测试框架:
- 准备一个CSV文件来存储测试用例和预期结果。
- 编写测试脚本,其中包含测试用例的读取、发送请求、评分逻辑和结果验证。
- 使用
pytest断言来验证测试结果。
首先安装pytest和requests库:
pip install pytest requests
创建一个CSV文件test_cases.csv,它包含示例测试用例:
#问题,预期回复
"已付款,啥时候发货?","你好,系统在24小时内发顺丰快递的"
"麻烦尽快发货!","你好,已为您加急发货~"
"最晚几号发货?","你好,系统最晚在24小时内发顺丰快递的"
"用什么快递发货?","你好,默认是发顺丰快递"...
然后编写测试脚本test_ai_responses.py
import csv
import requests
import pytest# 假设的AI服务的URL
AI_SERVICE_URL = "http://192.168.1.100:8888/query"# 函数用于发送查询到AI服务
def send_query_to_ai(query):response = requests.post(AI_SERVICE_URL, json={"query": query})if response.status_code == 200:return response.json().get('response', '')else:# 在真实测试中,这里应该处理错误情况return None# 评分函数,这里使用简单的字符串相等进行评分
def score_response(ai_response, expected_response):return ai_response.strip().lower() == expected_response.strip().lower()# 读取CSV文件并构建测试用例
def read_test_cases(csv_file):test_cases = []with open(csv_file, newline='', encoding='utf-8') as csvfile:reader = csv.DictReader(csvfile)for row in reader:test_cases.append((row['query'], row['expected_response']))return test_cases# 参数化测试用例
test_data = read_test_cases('test_cases.csv')@pytest.mark.parametrize("query,expected_response", test_data)
def test_ai_response(query, expected_response):# 发送查询并获取AI系统的响应ai_response = send_query_to_ai(query)# 断言AI的响应是否与预期相符assert score_response(ai_response, expected_response), f"Query: {query}, Expected: {expected_response}, Got: {ai_response}"
代码解析:
-
上面定义了一个
send_query_to_ai函数来发送查询到AI客服系统,并获取响应。
我们还定义了一个score_response函数来评分响应。
read_test_cases函数从CSV文件中读取测试用例,并以适合pytest参数化测试的格式返回它们。 -
最后用
pytest.mark.parametrize装饰器来参数化test_ai_response函数,这样pytest就会为CSV文件中的每个测试用例运行一个测试。
在命令行中执行pytest命令。
pytest test_ai_responses.py
总结:以上实现了一个简单的评分机制:检查字符串是否完全匹配。
下面,来点硬货,实现更复杂的、更科学有效的评分机制:
评估响应的语义相似度,一般有2个方法:
- 使用词嵌入(如Word2Vec、GloVe或BERT)来将文本转换为向量,然后计算这些向量之间的
余弦相似度。 - 使用专门的评估指标,如
BLEU(双语评估底线),这个常用在机器翻译领域。其实还有一个方案(偷懒~)是直接调用语言模型(如GPT-3或BERT)来进行语义相似度评分。
- 余弦相似度是一种计算两个非零向量夹角余弦值的度量,它可以用来评估文本向量的相似性。
- BLEU(BiLingual Evaluation Understudy)分数则通过比较机器翻译的输出和一组参考翻译来评估质量,计算n-gram的重叠度。BLEU主要关注准确性,它计算了几个不同大小的n-gram(通常是1到4)的精确匹配,并通过考虑最长的匹配序列来惩罚过短的生成句子。
- ROUGE(Recall-Oriented Understudy for Gisting Evaluation)分数和BLEU都是常用于评估自然语言生成系统的指标,尤其在机器翻译和文本摘要领域。ROUGE评估自动文本摘要时更关注召回率,即参考摘要中的n-gram有多少被生成摘要所覆盖。ROUGE有多个变体,如ROUGE-N(考虑n-gram重叠)、ROUGE-L(考虑最长公共子序列)等。
步骤 1: 安装所需的库
我们需要安装一些NLP库,如transformers和sentence-transformers,以及scikit-learn来计算余弦相似度。
pip install transformers sentence-transformers scikit-learn
步骤 2: 编写评分逻辑
我们将使用Hugging Face的transformers库来获取预训练的BERT模型的句子嵌入,然后使用scikit-learn来计算余弦相似度。
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity# 加载预训练的句子嵌入模型
model = SentenceTransformer('all-MiniLM-L6-v2')def calculate_cosine_similarity(response1, response2):# 将文本转换为向量embeddings = model.encode([response1, response2])# 计算向量之间的余弦相似度cosine_sim = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]return cosine_simdef score_response(ai_response, expected_response):# 计算余弦相似度similarity_score = calculate_cosine_similarity(ai_response, expected_response)# 可以设置阈值来确定是否接受响应return similarity_score
在测试框架中加入BLEU和ROUGE分数计算方法
安装nltk和rouge-score库:
pip install nltk rouge-score
然后,更新测试脚本以包括BLEU和ROUGE评分:
import nltk
from rouge_score import rouge_scorer
from nltk.translate.bleu_score import sentence_bleu# nltk下载器需要的数据
nltk.download('punkt')def calculate_bleu_score(candidate, reference):# 分词candidate_tokens = nltk.word_tokenize(candidate)reference_tokens = nltk.word_tokenize(reference)# 计算BLEU分数score = sentence_bleu([reference_tokens], candidate_tokens)return scoredef calculate_rouge_score(candidate, reference):# 初始化ROUGE评分器scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True)# 计算ROUGE分数scores = scorer.score(reference, candidate)return scores# ...其他测试代码保持不变...@pytest.mark.parametrize("query,expected_response", test_data)
def test_ai_response(query, expected_response):# 发送查询并获取AI系统的响应ai_response = send_query_to_ai(query)# 计算BLEU分数bleu_score = calculate_bleu_score(ai_response, expected_response)# 计算ROUGE分数rouge_scores = calculate_rouge_score(ai_response, expected_response)# 断言BLEU分数和ROUGE分数是否满足预期assert bleu_score > 0.5, f"Query: {query}, Expected: {expected_response}, Got: {ai_response}, BLEU: {bleu_score}"assert rouge_scores['rouge1'].fmeasure > 0.5, f"Query: {query}, Expected: {expected_response}, Got: {ai_response}, ROUGE-1: {rouge_scores['rouge1'].fmeasure}"assert rouge_scores['rougeL'].fmeasure > 0.5, f"Query: {query}, Expected: {expected_response}, Got: {ai_response}, ROUGE-L: {rouge_scores['rougeL'].fmeasure}"
前面定义了两个函数calculate_bleu_score和calculate_rouge_score来计算BLEU和ROUGE分数。然后,在测试函数test_ai_response中,我们计算这些分数并使用assert语句来检查它们是否满足预设的阈值。请注意,BLEU和ROUGE分数的阈值(在这里假设为0.5)应该根据实际情况进行调整。这些阈值可以通过对历史数据的分析来确定,以确保它们反映出对系统性能的实际期望。此外,BLEU和ROUGE分数对于某些类型的响应可能不够灵敏,因此应该结合其他评估方法使用。
步骤 3: 更新测试脚本
更新上面的test_ai_responses.py脚本,修改为最新评分逻辑。
# ...其他代码保持不变...@pytest.mark.parametrize("query,expected_response", test_data)
def test_ai_response(query, expected_response):# 发送查询并获取AI系统的响应ai_response = send_query_to_ai(query)# 计算余弦相似度similarity_score = calculate_cosine_similarity(ai_response, expected_response)# 断言相似度得分是否高于设定的阈值# 余弦相似度是一种常用的度量文本相似度的方法,但它可能不足以捕捉所有语义差异,因此我们设置了一个阈值来判断响应是否足够接近预期。assert similarity_score > 0.7, f"Query: {query}, Expected: {expected_response}, Got: {ai_response}, Similarity: {similarity_score}"
相似度阈值的设计
- 实际应用中需要根据具体情况调整相似度阈值或考虑其他评分机制,比如结合BLEU分数或ROUGE分数。
重新运行测试
使用pytest运行测试,对比结果
pytest test_ai_responses.py
写在最后:自动化测试无法完全替代人工评审,特别是在处理复杂、开放式的用户查询时。但自动化测试结合人工评审可以大大提升效率,更好地保障AI智能客服的回答质量。
相关文章:
AI客服的评分机制及自动化测试
智能客服的评分机制及自动化测试 使用pytest来编写智能客服的测试框架: 准备一个CSV文件来存储测试用例和预期结果。编写测试脚本,其中包含测试用例的读取、发送请求、评分逻辑和结果验证。使用pytest断言来验证测试结果。 首先安装pytest和requests库…...
【Matlab】ELM极限学习机时序预测算法
资源下载: https://download.csdn.net/download/vvoennvv/88681649 一,概述 ELM(Extreme Learning Machine)是一种单层前馈神经网络结构,与传统神经网络不同的是,ELM的隐层神经元权重以及偏置都是随机产生的…...
m3u8网络视频文件下载方法
在windows下,使用命令行cmd的命令下载m3u8视频文件并保存为mp4文件。 1.下载ffmpeg,访问FFmpeg官方网站:https://www.ffmpeg.org/进行下载 ffmpeg下载,安装,操作说明 https://blog.csdn.net/m0_53157282/article/det…...
相机内参标定理论篇------张正友标定法
一、为什么做相机标定? 标定是为了得到相机坐标系下的点和图像像素点的映射关系,为摄影几何、计算机视觉等应用做准备。 二、为什么需要张正友标定法? 张正友标定法使手工标定相机成为可能,使相机标定不再需要精密的设备帮助。…...
鸿蒙 Window 环境的搭建
鸿蒙操作系统是国内自研的新一代的智能终端操作系统,支持多种终端设备部署,能够适配不同类别的硬件资源和功能需求。是一款面向万物互联的全场景分布式操作系统。 下载、安装与配置 DevEco Studio支持Windows系统和macOS系统 Windows系统配置华为官方推…...
新一代大语言模型在Amazon Bedrock引领人工智能潮流
亚马逊Bedrock平台推出全新Amazon Titan大语言模型,为大型数据集预处理提供强大支持。亚马逊云科技开发者大会演讲重点介绍了Amazon Titan在文本大语言模型领域的创新,以及如何通过Bedrock平台实现定制化应用。 亚马逊Bedrock平台的主要产品经理Brent S…...
kafka实现延迟消息
背景 我们知道消息中间件mq是支持延迟消息的发送功能的,但是kafka不支持这种直接的用法,所以我们需要独立实现这个功能,以下是在kafka中实现消息延时投递功能的一种方案 kafka实现延时消息 主要的思路是增加一个检测服务,这个检…...
python+django高校教材共享管理系统PyCharm 项目
本中原工学院教材共享平台采用的数据库是mysql,使用nodejs技术开发。在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。系统所要实现的功能分析,对于现在网络方便的管理&…...
三子棋(c语言)
前言: 三子棋是一种民间传统游戏,又叫九宫棋、圈圈叉叉棋、一条龙、井字棋等。游戏规则是双方对战,双方依次在9宫格棋盘上摆放棋子,率先将自己的三个棋子走成一条线就视为胜利。但因棋盘太小,三子棋在很多时候会出现和…...
09.kubernetes 部署calico / flannel网络插件
脚本中实现了 calico 和 flannel 这两种主流的网络插件,选择其中一种部署即可 1、calico calico架构 Calico是一个三层的虚拟网络解决方案,它把每个节点都当作虚拟路由器(vRouter),并把每个节点上的Pod都当作是节点路由器后的一个终端设备并为其分配一个IP地址。各节点…...
【DevOps 工具链】搭建 项目管理软件 禅道
文章目录 1、简介2、环境要求3、搭建部署环境3.1. 安装Apache服务3.2. 安装PHP环境(以php7.0为例 )3.3. 安装MySQL服务 4、搭建禅道4.1、下载解压4.2、 配置4.2.1、 启动4.2.2、自启动4.2.3、确认是否开机启动 5、成功安装 1、简介 禅道是国产开源项目管…...
ES6的默认参数和rest参数
✨ 专栏介绍 在现代Web开发中,JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性,还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言,JavaScript具有广泛的应用场景&#x…...
深入理解WPF MVVM:探索数据绑定与命令的优雅之道
引言: WPF(Windows Presentation Foundation)是一种用于创建富客户端应用程序的框架,而MVVM(Model-View-ViewModel)则是一种在WPF中使用的架构模式。MVVM提供了一种优雅的方式来组织和管理应用程序的代码&a…...
ssrf之gopher协议的使用和配置,以及需要注意的细节
gopher协议 目录 gopher协议 (1)安装一个cn (2)使用Gopher协议发送一个请求,环境为:nc起一个监听,curl发送gopher请求 (3)使用curl发送http请求,命令为 …...
SVN下载安装(服务器与客户端)
1.下载 服务器下载:Download | VisualSVN Server 客户端下载:自行查找 2. 服务器安装 双击执行 运行 下一步 同意下一步 下一步 选中安装目录 3. 客户端安装 双击执行 下一步 4. 服务器创建仓库 5. 服务器创建用户 6. 客户端获取资源 文件夹右键...
SpringIOC之ApplicationObjectSupport
博主介绍:✌全网粉丝5W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验…...
香橙派 ubuntu实现打通内网,外网双网络,有线和无线双网卡
当香橙派 ubuntu 连了有线,和无线时,默认请求外网时,只走一个网卡,如走了内网网卡,就只能访问内访问,访问不了外网;走了外网网卡就只能访问外网,访问不了内网; 实现双网…...
Spring Boot简单多线程定时任务实现 | @Async | @Scheduled
Spring Boot简单多线程定时任务实现 实现步骤 1 创建一个Spring Boot项目 2 定义定时任务: package com.jmd.timertasktest.task;import org.springframework.context.annotation.Configuration; import org.springframework.scheduling.annotation.Async; impor…...
sklearn学习的一个例子用pycharm jupyter
环境 运行在jupyter 进行开发。即一个WEB端的开发工具。能适时显示开发的输出。后缀用的是ipynb.pycharm也可以支持。但也要提示按装jupyter. 或直接用andcoda 这里我们用pycharm进行项目创建 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyterlab pip ins…...
JVM的生命周期
1.加载(Loading): 在加载阶段,JVM会找到并加载Java字节码文件。加载阶段分为三个步骤:通过类的全限定名找到对应的字节码文件,创建一个与该类相关的Class对象,将类的静态数据结构存储在方法区中…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
Qt Quick Controls模块功能及架构
Qt Quick Controls是Qt Quick的一个附加模块,提供了一套用于构建完整用户界面的UI控件。在Qt 6.0中,这个模块经历了重大重构和改进。 一、主要功能和特点 1. 架构重构 完全重写了底层架构,与Qt Quick更紧密集成 移除了对Qt Widgets的依赖&…...
Spring事务传播机制有哪些?
导语: Spring事务传播机制是后端面试中的必考知识点,特别容易出现在“项目细节挖掘”阶段。面试官通过它来判断你是否真正理解事务控制的本质与异常传播机制。本文将从实战与源码角度出发,全面剖析Spring事务传播机制,帮助你答得有…...
