当前位置: 首页 > news >正文

AI客服的评分机制及自动化测试

智能客服的评分机制及自动化测试

使用pytest来编写智能客服的测试框架:

  1. 准备一个CSV文件来存储测试用例和预期结果。
  2. 编写测试脚本,其中包含测试用例的读取、发送请求、评分逻辑和结果验证。
  3. 使用pytest断言来验证测试结果。

首先安装pytestrequests库:

pip install pytest requests

创建一个CSV文件test_cases.csv,它包含示例测试用例:

#问题,预期回复
"已付款,啥时候发货?","你好,系统在24小时内发顺丰快递的"
"麻烦尽快发货!","你好,已为您加急发货~"
"最晚几号发货?","你好,系统最晚在24小时内发顺丰快递的"
"用什么快递发货?","你好,默认是发顺丰快递"...

然后编写测试脚本test_ai_responses.py

import csv
import requests
import pytest# 假设的AI服务的URL
AI_SERVICE_URL = "http://192.168.1.100:8888/query"# 函数用于发送查询到AI服务
def send_query_to_ai(query):response = requests.post(AI_SERVICE_URL, json={"query": query})if response.status_code == 200:return response.json().get('response', '')else:# 在真实测试中,这里应该处理错误情况return None# 评分函数,这里使用简单的字符串相等进行评分
def score_response(ai_response, expected_response):return ai_response.strip().lower() == expected_response.strip().lower()# 读取CSV文件并构建测试用例
def read_test_cases(csv_file):test_cases = []with open(csv_file, newline='', encoding='utf-8') as csvfile:reader = csv.DictReader(csvfile)for row in reader:test_cases.append((row['query'], row['expected_response']))return test_cases# 参数化测试用例
test_data = read_test_cases('test_cases.csv')@pytest.mark.parametrize("query,expected_response", test_data)
def test_ai_response(query, expected_response):# 发送查询并获取AI系统的响应ai_response = send_query_to_ai(query)# 断言AI的响应是否与预期相符assert score_response(ai_response, expected_response), f"Query: {query}, Expected: {expected_response}, Got: {ai_response}"

代码解析:

  • 上面定义了一个send_query_to_ai函数来发送查询到AI客服系统,并获取响应。
    我们还定义了一个score_response函数来评分响应。
    read_test_cases函数从CSV文件中读取测试用例,并以适合pytest参数化测试的格式返回它们。

  • 最后用pytest.mark.parametrize装饰器来参数化test_ai_response函数,这样pytest就会为CSV文件中的每个测试用例运行一个测试。

在命令行中执行pytest命令。
pytest test_ai_responses.py

总结:以上实现了一个简单的评分机制:检查字符串是否完全匹配。


下面,来点硬货,实现更复杂的、更科学有效的评分机制:

评估响应的语义相似度,一般有2个方法:

  • 使用词嵌入(如Word2Vec、GloVe或BERT)来将文本转换为向量,然后计算这些向量之间的余弦相似度
  • 使用专门的评估指标,如BLEU(双语评估底线),这个常用在机器翻译领域。其实还有一个方案(偷懒~)是直接调用语言模型(如GPT-3或BERT)来进行语义相似度评分。
  • 余弦相似度是一种计算两个非零向量夹角余弦值的度量,它可以用来评估文本向量的相似性。
  • BLEU(BiLingual Evaluation Understudy)分数则通过比较机器翻译的输出和一组参考翻译来评估质量,计算n-gram的重叠度。BLEU主要关注准确性,它计算了几个不同大小的n-gram(通常是1到4)的精确匹配,并通过考虑最长的匹配序列来惩罚过短的生成句子。
  • ROUGE(Recall-Oriented Understudy for Gisting Evaluation)分数和BLEU都是常用于评估自然语言生成系统的指标,尤其在机器翻译和文本摘要领域。ROUGE评估自动文本摘要时更关注召回率,即参考摘要中的n-gram有多少被生成摘要所覆盖。ROUGE有多个变体,如ROUGE-N(考虑n-gram重叠)、ROUGE-L(考虑最长公共子序列)等。

步骤 1: 安装所需的库

我们需要安装一些NLP库,如transformerssentence-transformers,以及scikit-learn来计算余弦相似度。

pip install transformers sentence-transformers scikit-learn

步骤 2: 编写评分逻辑

我们将使用Hugging Face的transformers库来获取预训练的BERT模型的句子嵌入,然后使用scikit-learn来计算余弦相似度。

from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity# 加载预训练的句子嵌入模型
model = SentenceTransformer('all-MiniLM-L6-v2')def calculate_cosine_similarity(response1, response2):# 将文本转换为向量embeddings = model.encode([response1, response2])# 计算向量之间的余弦相似度cosine_sim = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]return cosine_simdef score_response(ai_response, expected_response):# 计算余弦相似度similarity_score = calculate_cosine_similarity(ai_response, expected_response)# 可以设置阈值来确定是否接受响应return similarity_score

在测试框架中加入BLEU和ROUGE分数计算方法

安装nltk和rouge-score库:

pip install nltk rouge-score

然后,更新测试脚本以包括BLEU和ROUGE评分:

import nltk
from rouge_score import rouge_scorer
from nltk.translate.bleu_score import sentence_bleu# nltk下载器需要的数据
nltk.download('punkt')def calculate_bleu_score(candidate, reference):# 分词candidate_tokens = nltk.word_tokenize(candidate)reference_tokens = nltk.word_tokenize(reference)# 计算BLEU分数score = sentence_bleu([reference_tokens], candidate_tokens)return scoredef calculate_rouge_score(candidate, reference):# 初始化ROUGE评分器scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True)# 计算ROUGE分数scores = scorer.score(reference, candidate)return scores# ...其他测试代码保持不变...@pytest.mark.parametrize("query,expected_response", test_data)
def test_ai_response(query, expected_response):# 发送查询并获取AI系统的响应ai_response = send_query_to_ai(query)# 计算BLEU分数bleu_score = calculate_bleu_score(ai_response, expected_response)# 计算ROUGE分数rouge_scores = calculate_rouge_score(ai_response, expected_response)# 断言BLEU分数和ROUGE分数是否满足预期assert bleu_score > 0.5, f"Query: {query}, Expected: {expected_response}, Got: {ai_response}, BLEU: {bleu_score}"assert rouge_scores['rouge1'].fmeasure > 0.5, f"Query: {query}, Expected: {expected_response}, Got: {ai_response}, ROUGE-1: {rouge_scores['rouge1'].fmeasure}"assert rouge_scores['rougeL'].fmeasure > 0.5, f"Query: {query}, Expected: {expected_response}, Got: {ai_response}, ROUGE-L: {rouge_scores['rougeL'].fmeasure}"

前面定义了两个函数calculate_bleu_score和calculate_rouge_score来计算BLEU和ROUGE分数。然后,在测试函数test_ai_response中,我们计算这些分数并使用assert语句来检查它们是否满足预设的阈值。请注意,BLEU和ROUGE分数的阈值(在这里假设为0.5)应该根据实际情况进行调整。这些阈值可以通过对历史数据的分析来确定,以确保它们反映出对系统性能的实际期望。此外,BLEU和ROUGE分数对于某些类型的响应可能不够灵敏,因此应该结合其他评估方法使用。

步骤 3: 更新测试脚本

更新上面的test_ai_responses.py脚本,修改为最新评分逻辑。

# ...其他代码保持不变...@pytest.mark.parametrize("query,expected_response", test_data)
def test_ai_response(query, expected_response):# 发送查询并获取AI系统的响应ai_response = send_query_to_ai(query)# 计算余弦相似度similarity_score = calculate_cosine_similarity(ai_response, expected_response)# 断言相似度得分是否高于设定的阈值# 余弦相似度是一种常用的度量文本相似度的方法,但它可能不足以捕捉所有语义差异,因此我们设置了一个阈值来判断响应是否足够接近预期。assert similarity_score > 0.7, f"Query: {query}, Expected: {expected_response}, Got: {ai_response}, Similarity: {similarity_score}"

相似度阈值的设计

  • 实际应用中需要根据具体情况调整相似度阈值或考虑其他评分机制,比如结合BLEU分数或ROUGE分数。

重新运行测试

使用pytest运行测试,对比结果

pytest test_ai_responses.py

写在最后:自动化测试无法完全替代人工评审,特别是在处理复杂、开放式的用户查询时。但自动化测试结合人工评审可以大大提升效率,更好地保障AI智能客服的回答质量。

相关文章:

AI客服的评分机制及自动化测试

智能客服的评分机制及自动化测试 使用pytest来编写智能客服的测试框架: 准备一个CSV文件来存储测试用例和预期结果。编写测试脚本,其中包含测试用例的读取、发送请求、评分逻辑和结果验证。使用pytest断言来验证测试结果。 首先安装pytest和requests库…...

【Matlab】ELM极限学习机时序预测算法

资源下载: https://download.csdn.net/download/vvoennvv/88681649 一,概述 ELM(Extreme Learning Machine)是一种单层前馈神经网络结构,与传统神经网络不同的是,ELM的隐层神经元权重以及偏置都是随机产生的…...

m3u8网络视频文件下载方法

在windows下,使用命令行cmd的命令下载m3u8视频文件并保存为mp4文件。 1.下载ffmpeg,访问FFmpeg官方网站:https://www.ffmpeg.org/进行下载 ffmpeg下载,安装,操作说明 https://blog.csdn.net/m0_53157282/article/det…...

相机内参标定理论篇------张正友标定法

一、为什么做相机标定? 标定是为了得到相机坐标系下的点和图像像素点的映射关系,为摄影几何、计算机视觉等应用做准备。 二、为什么需要张正友标定法? 张正友标定法使手工标定相机成为可能,使相机标定不再需要精密的设备帮助。…...

鸿蒙 Window 环境的搭建

鸿蒙操作系统是国内自研的新一代的智能终端操作系统,支持多种终端设备部署,能够适配不同类别的硬件资源和功能需求。是一款面向万物互联的全场景分布式操作系统。 下载、安装与配置 DevEco Studio支持Windows系统和macOS系统 Windows系统配置华为官方推…...

新一代大语言模型在Amazon Bedrock引领人工智能潮流

亚马逊Bedrock平台推出全新Amazon Titan大语言模型,为大型数据集预处理提供强大支持。亚马逊云科技开发者大会演讲重点介绍了Amazon Titan在文本大语言模型领域的创新,以及如何通过Bedrock平台实现定制化应用。 亚马逊Bedrock平台的主要产品经理Brent S…...

kafka实现延迟消息

背景 我们知道消息中间件mq是支持延迟消息的发送功能的,但是kafka不支持这种直接的用法,所以我们需要独立实现这个功能,以下是在kafka中实现消息延时投递功能的一种方案 kafka实现延时消息 主要的思路是增加一个检测服务,这个检…...

python+django高校教材共享管理系统PyCharm 项目

本中原工学院教材共享平台采用的数据库是mysql,使用nodejs技术开发。在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。系统所要实现的功能分析,对于现在网络方便的管理&…...

三子棋(c语言)

前言: 三子棋是一种民间传统游戏,又叫九宫棋、圈圈叉叉棋、一条龙、井字棋等。游戏规则是双方对战,双方依次在9宫格棋盘上摆放棋子,率先将自己的三个棋子走成一条线就视为胜利。但因棋盘太小,三子棋在很多时候会出现和…...

09.kubernetes 部署calico / flannel网络插件

脚本中实现了 calico 和 flannel 这两种主流的网络插件,选择其中一种部署即可 1、calico calico架构 Calico是一个三层的虚拟网络解决方案,它把每个节点都当作虚拟路由器(vRouter),并把每个节点上的Pod都当作是节点路由器后的一个终端设备并为其分配一个IP地址。各节点…...

【DevOps 工具链】搭建 项目管理软件 禅道

文章目录 1、简介2、环境要求3、搭建部署环境3.1. 安装Apache服务3.2. 安装PHP环境(以php7.0为例 )3.3. 安装MySQL服务 4、搭建禅道4.1、下载解压4.2、 配置4.2.1、 启动4.2.2、自启动4.2.3、确认是否开机启动 5、成功安装 1、简介 禅道是国产开源项目管…...

ES6的默认参数和rest参数

✨ 专栏介绍 在现代Web开发中,JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性,还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言,JavaScript具有广泛的应用场景&#x…...

深入理解WPF MVVM:探索数据绑定与命令的优雅之道

引言: WPF(Windows Presentation Foundation)是一种用于创建富客户端应用程序的框架,而MVVM(Model-View-ViewModel)则是一种在WPF中使用的架构模式。MVVM提供了一种优雅的方式来组织和管理应用程序的代码&a…...

ssrf之gopher协议的使用和配置,以及需要注意的细节

gopher协议 目录 gopher协议 (1)安装一个cn (2)使用Gopher协议发送一个请求,环境为:nc起一个监听,curl发送gopher请求 (3)使用curl发送http请求,命令为 …...

SVN下载安装(服务器与客户端)

1.下载 服务器下载:Download | VisualSVN Server 客户端下载:自行查找 2. 服务器安装 双击执行 运行 下一步 同意下一步 下一步 选中安装目录 3. 客户端安装 双击执行 下一步 4. 服务器创建仓库 5. 服务器创建用户 6. 客户端获取资源 文件夹右键...

SpringIOC之ApplicationObjectSupport

博主介绍:✌全网粉丝5W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验…...

香橙派 ubuntu实现打通内网,外网双网络,有线和无线双网卡

当香橙派 ubuntu 连了有线,和无线时,默认请求外网时,只走一个网卡,如走了内网网卡,就只能访问内访问,访问不了外网;走了外网网卡就只能访问外网,访问不了内网; 实现双网…...

Spring Boot简单多线程定时任务实现 | @Async | @Scheduled

Spring Boot简单多线程定时任务实现 实现步骤 1 创建一个Spring Boot项目 2 定义定时任务: package com.jmd.timertasktest.task;import org.springframework.context.annotation.Configuration; import org.springframework.scheduling.annotation.Async; impor…...

sklearn学习的一个例子用pycharm jupyter

环境 运行在jupyter 进行开发。即一个WEB端的开发工具。能适时显示开发的输出。后缀用的是ipynb.pycharm也可以支持。但也要提示按装jupyter. 或直接用andcoda 这里我们用pycharm进行项目创建 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyterlab pip ins…...

JVM的生命周期

1.加载(Loading): 在加载阶段,JVM会找到并加载Java字节码文件。加载阶段分为三个步骤:通过类的全限定名找到对应的字节码文件,创建一个与该类相关的Class对象,将类的静态数据结构存储在方法区中…...

ElasticSearch--基本操作

ElasticSearch 完成ES安装 http://101.42.93.208:5601/app/dev_tools#/console 库的操作 创建索引库 请求方式:PUT 请求路径:/索引库名,可以自定义 请求参数:mapping映射 PUT /test {"mappings": {"propertie…...

大数据应用发展史:从搜索引擎时代到机器学习时代

文章目录 搜索引擎时代数据仓库时代数据挖掘时代机器学习时代小结 大数据技术的使用经历了一个发展过程 从最开始的Google在搜索引擎中开始使用大数据技术,到现在无处不在的各种人工智能应用,伴随着大数据技术的发展,大数据应用也从曲高和寡…...

java基础之String的不可变性

目录 概述 String是如何实现不可变的 String为何设计成不可变的 1.缓存和性能优化 2.安全性 3.线程安全性 4.API设计和预测性能 概述 String类的不可变性意味着一旦创建了一个字符串对象,它的值就不能被修改。 String是如何实现不可变的 查看源码 public …...

【JS】Promise详解

概述 在 JavaScript 中,Promise 是一个表示异步操作最终完成或失败的对象。它本质上是一个返回的对象,你可以附加回调函数,而不是将回调传递给函数。 let promise new Promise((resolve, reject) > {let condition true; // 这可以是某…...

原生微信小程序如何动态配置主题颜色及如何调用子组件的方法

一、最终效果 二、步骤 1、在初始化进入项目时,获取当前主题色 2、把主题色定义成全局变量(即在app.js中设置) 3、tabBar也需要定义全局变量,在首页时需要重新赋值 三、具体实现 1、app.js onLaunch () {//获取主题数据this.set…...

Java关键字(1)

Java中的关键字是指被编程语言保留用于特定用途的单词。这些关键字不能用作变量名或标识符。以下是Java中的一些关键字: public:表示公共的,可以被任何类访问。 private:表示私有的,只能被定义该关键字的类访问。 cl…...

【机器学习合集】深度生成模型 ->(个人学习记录笔记)

深度生成模型 深度生成模型基础 1. 监督学习与无监督学习 1.1 监督学习 定义 在真值标签Y的指导下,学习一个映射函数F,使得F(X)Y 判别模型 Discriminative Model,即判别式模型,又称为条件模型,或条件概率模型 生…...

Java将PDF转换为文本

在Java中&#xff0c;你可以使用现有的库来将PDF文件转换为文本。下面是一个简单的示例&#xff0c;使用Apache PDFBox库来实现PDF到文本的转换。首先&#xff0c;确保在你的项目中添加了Apache PDFBox库的依赖。你可以在 Maven 项目中添加以下依赖&#xff1a; <!--Pdf--&g…...

Linux 运维工具之1Panel

一、1Panel 简介 1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。 特点&#xff1a; 快速建站&#xff1a;深度集成 Wordpress 和 Halo&#xff0c;域名绑定、SSL 证书配置等一键搞定&#xff1b;高效管理&#xff1a;通过 Web 端轻松管理 Linux 服务器&#xff0…...

深入了解小红书笔记详情API:为内容创新提供动力

一、小红书笔记详情API简介 小红书笔记详情API是一种允许开发者访问小红书平台上的笔记详细数据的接口。通过这个API&#xff0c;我们可以获取笔记的标题、内容、标签、点赞数、评论数等详细信息。这些数据对于内容创作者和品牌来说至关重要&#xff0c;可以帮助他们了解用户喜…...

辽宁建设官方网站/百度关键词优化策略

前语&#xff1a;不要为了读文章而读文章&#xff0c;一定要带着问题来读文章&#xff0c;勤思考。在此&#xff0c;建议大家为本公众号加“星标”。如文章写得好&#xff0c;望大家阅读后在右下边“在看”处点个赞&#xff0c;以示鼓励&#xff01;作者:LiWenD 来源&#xff…...

中学加强校园网站建设/百度百度

超级链接是指从一个网页指向一个目标的链接关系&#xff0c;这个目标可以是另一个网页&#xff0c;也可以是相同网页上的不同位置&#xff0c;还可以是一个图片&#xff0c;一个电子邮件地址&#xff0c;一个文件&#xff0c;甚至是一个应用程序。在网页中能成为超级链接的元素…...

服务器域名是什么?/seo推广排名平台有哪些

小A是一个中度强迫症患者,每次做数组有关的题目都异常难受,他十分希望数组的每一个元素都一样大,这样子看起来才是最棒的,所以他决定通过一些操作把这个变成一个看起来不难受的数组,但他又想不要和之前的那个数组偏差那么大,所以他每次操作只给这个数组的其中n-1个元素加1, 输入…...

asp+sql server典型网站建设案例 光盘/最新旅游热点

如果不看glibc的代码&#xff0c;那么也许你永远也不知道什么叫境界&#xff0c;仅仅认为简单的可读性强的代码就是最好的代码的人也一定停留在应届毕业生的水平&#xff0c;程序很大意义上是给机器看的而不是给人看的&#xff0c;人看程序很大意义上是维护和经验学习&#xff…...

在一个空间建两个网站/全球搜索引擎排名

前言 SQL 语句执行慢的原因是面试中经常会被问到的&#xff0c;对于服务端开发来说也是必须要关注的问题。 在生产环境中&#xff0c;SQL 执行慢是很严重的事件。那么如何定位慢 SQL、慢的原因及如何防患于未然。接下来带着这些问题让我们开启本期之旅&#xff01; 第一部分必…...

南阳网站建设价格/网络服务商怎么咨询

#include<stdio.h> #include<ctype.h> #include<string.h> #include<math.h> #include<stdlib.h> int main(void) {int i, j, n, a[10], b[50]; // 数组 a是题目输入的十个数字 &#xff0c;数组 b是 a所代表的所有数字 for (i 0; i < 10;…...