当前位置: 首页 > news >正文

最优化方法Python计算:无约束优化应用——逻辑分类模型

逻辑回归模型更多地用于如下例所示判断或分类场景。
例1 某银行的贷款用户数据如下表:

欠款(元)收入(元)是否逾期
17000800Yes
220002500No
350003000Yes
440004000No
520003800No

显然,客户是否逾期(记为 y y y)与其欠款额(记为 x 1 x_1 x1)和收入(记为 x 2 x_2 x2)相关。如果将客户逾期还款记为1,未逾期记为0,我们希望根据表中数据建立 R 2 → { 0 , 1 } \text{R}^2\rightarrow\{0,1\} R2{0,1}的拟合函数
y = F ( x ) y=F(\boldsymbol{x}) y=F(x)
使得 F ( x i ) ≈ y i , i = 1 , 2 , ⋯ , 5 F(\boldsymbol{x}_i)\approx y_i,i=1,2,\cdots,5 F(xi)yi,i=1,2,,5,并用 F ( x ) F(\boldsymbol{x}) F(x)根据新客户的欠款额与收入数据

欠款(元)收入(元)是否逾期
35003500?
30002100?

进行预测分类。
要用回归模型分类,关键在于如何将预测值 y y y离散化为0,1,或一般地离散化为连续的 n n n个整数 N 1 , N 1 + 1 , ⋯ , N 1 + n − 1 , N 2 N_1, N_1+1,\cdots,N_1+n-1,N_2 N1,N1+1,,N1+n1,N2。解决之道是设置阈值,譬如,设 μ 1 = N 1 + 0.5 , μ 2 = N 1 + 1.5 , ⋯ , μ n − 1 = N 1 + n − 0.5 \mu_1=N_1+0.5,\mu_2=N_1+1.5,\cdots,\mu_{n-1}=N_1+n-0.5 μ1=N1+0.5,μ2=N1+1.5,,μn1=N1+n0.5,对 y < μ 1 y<\mu_1 y<μ1 y y y转换为 N 1 N_1 N1 μ i ≤ y < μ i + 1 \mu_i\leq y<\mu_{i+1} μiy<μi+1,将其转化为 N 1 + i N_1+i N1+i y ≥ μ n − 1 y\geq\mu_{n-1} yμn1,转换为 N 2 N_2 N2
其次,对分类模型的评价指标应该是分类正确率:设 ( x i , y i ) (\boldsymbol{x}_i,y_i) (xi,yi) i = 1 , 2 , ⋯ , m i=1,2,\cdots,m i=1,2,,m为测试数据。用训练所得的最优模式 w 0 \boldsymbol{w}_0 w0,得预测值 y i ′ y'_i yi i = 1 , 2 , ⋯ , m i=1,2,\cdots,m i=1,2,,m。记 y = ( y 1 y 2 ⋮ y m ) \boldsymbol{y}=\begin{pmatrix}y_1\\y_2\\\vdots\\y_m\end{pmatrix} y= y1y2ym y t = ( y 1 ′ y 2 ′ ⋮ y m ′ ) \boldsymbol{y}_t=\begin{pmatrix}y'_1\\y'_2\\\vdots\\y'_m\end{pmatrix} yt= y1y2ym ,计算 y i = y i ′ y_i=y'_i yi=yi成立的个数 m 1 m_1 m1,则正确率为 m 1 m × 100 \frac{m_1}{m}\times100 mm1×100
下列代码实现用于分类的Classification类。

import numpy as np										#导入numpy
class Classification():									#分类模型def threshold(self, x):								#阈值函数N1 = x.min().astype(int) - 1					#最小阈值整数部分N2 = np.round(x.max()).astype(int) + 1			#最大阈值整数部分y = np.array([N1] * x.size)						#因变量数组for n in range(N1, N2):							#对每个可能的函数值d = np.where((x >= n - 0.5)&(x < n + 0.5))	#取值区间y[d] = n									#函数值if(y.size == 1):								#单值情形y = y[0]return ydef predict(self, X):								#重载预测函数yp = RegressModel.predict(self, X)				#计算预测值return self.threshold(yp)						#转换为离散值def accuracy(self, y1, y2):							#正确率m = y1.sizeacc=np.where(y1 == y2)[0].size					#计算两者相等的元素个数return acc / m * 100def test(self, x, y):								#测试函数yp = self.predict(x)return yp, self.accuracy(y, yp)
class LogicClassifier(Classification, LogicModel):'''逻辑分类模型'''

程序中第2~22行定义了用于分类的Classification辅助类。其中第3~12行定义阈值函数threshold。第13~15行在预测函数predict外“套上”阈值函数threshold,筛选出分类值返回。第16~19行定义计算两个等长整数数组y1,y2中对应元素相等的比率函数accuracy。第20~22行定义测试函数test,对测试数据x和y,计算x的预测值yp,然后调用accuracy计算y和yt的相等比率返回。第23~24行联合Classification类和LogicModel类(详见博文《最优化方法Python计算:无约束优化应用——逻辑回归模型》)实现逻辑分类模型类LogicClassifier。下面我们来小试牛刀:用逻辑分类模型LogicClassifier计算例1中的问题。

import numpy as np								#导入numpy
x = np.array([[7000, 800],						#设置训练、测试数据[2000, 2500],[5000, 3000],[4000, 4000],[2000, 3800]])
y = np.array([1, 0, 1, 0, 0])
title = np.array(['No', 'Yes'])					#预测值标签
np.random.seed(2024)							#随机种子
credit = LogicClassifier()						#创建逻辑分类模型
credit.fit(x,y)									#训练
_, acc=credit.test(x,y)							#测试
print('准确率:%.1f'%acc + '%')
x1 = np.array([[3500, 3500],					#设置预测数据[3000, 2100]])
print('对测试数据:')
print(x1)
Y = credit.predict(x1)							#计算预测值
print('归类为:')
print([title[y] for y in Y])

看官可借助代码内注释信息理解程序,需要提请注意的是第9行设置随机种子是为了使看官的运行结果与下列的输出一致。运行程序,输出

训练中...,稍候
3次迭代后完成训练。
准确率:100.0%
对测试数据:
[[3500 3500][3000 2100]]
归类为:
['No', 'Yes']

开胃菜后,上正餐。
综合案例
文件iris.csv(来自UC Irvine Machine Learning Repository)是统计学家R. A. Fisher在1936年采集的一个小型经典数据集,这是用于评估分类方法的最早的已知数据集之一。该数据集含有150例3种鸢尾花:setosa、versicolour和virginica的数据

Sepal.LengthSepal.WidthPetal.LengthPetal.WidthSpecies
15.13.51.40.2setosa
24.931.40.2setosa
34.73.21.30.2setosa
⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots
5173.24.71.4versicolor
526.43.24.51.5versicolor
536.93.14.91.5versicolor
⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots
1486.535.22virginica
1496.23.45.42.3virginica
1505.935.11.8virginica

五个数据属性的意义分别为

  • Sepal.Length:花萼长度;
  • Sepal.Width:花萼宽度;
  • Petal.Length:花瓣长度;
  • Petal.Width:花瓣宽度;
  • Species:种类。

下列代码从文件中读取数据,将花的种类数字化。

import numpy as np										#导入numpy
data = np.loadtxt('iris.csv', delimiter=',', dtype=str)	#读取数据文件
X = np.array(data)										#转换为数组
X = X[:, 1:]											#去掉编号
title = X[0, :4]										#读取特征名称
X = X[1:, :]											#去掉表头
Y = X[:, 4]												#读取标签数据
X = X[:, :4].astype(float)
m = X.shape[0]											#读取样本个数
print('共有%d个数据样本'%m)
print('鸢尾花特征数据:')
print(X)
Y = np.array([0 if y == 'setosa' else					#类别数值化1 if y == 'versicolor' else2 for y in Y])
print('鸢尾花种类数据:')
print(Y)

运行程序,输出

共有150个数据样本
鸢尾花特征数据:
[[5.1 3.5 1.4 0.2][4.9 3.  1.4 0.2][4.7 3.2 1.3 0.2]
...[6.5 3.  5.2 2. ][6.2 3.4 5.4 2.3][5.9 3.  5.1 1.8]]
鸢尾花种类数据:
[0 0 0 ... 2 2 2]

花萼的长度、宽度,花瓣的长度、宽度对鸢尾花的种类有明显的相关性。接下来我们要从数据集中随机选取一部分作为训练数据,训练LogicClassifier分类模型,然后用剩下的数据进行测试,评价训练效果。在前面的程序后添加以下代码

……
a = np.arange(m)									#数据项下标
np.random.seed(2024)
index = np.random.choice(a,m//3,replace=False)		#50个随机下标
Xtrain = X[index]									#训练数据
Ytrain = Y[index]
index1 = np.setdiff1d(a,index)						#测试数据下标
Xtest = X[index1]									#测试数据
Ytest = Y[index1]
iris = LogicClassifier()							#创建模型
print('随机抽取%d个样本作为训练数据。'%(m//3))
iris.fit(Xtrain,Ytrain)								#训练模型
_, accuracy = iris.test(Xtest,Ytest)				#测试
print('对其余%d个数据测试,分类正确率为%.2f'%(m-m//3,accuracy)+'%')

运行程序输出

……
随机抽取50个样本作为训练数据。
训练中...,稍候
23次迭代后完成训练。
对其余100个数据测试,分类正确率为99.00%

第1行的省略号表示前一程序的输出。从测试结果可见训练效果效果不错!

相关文章:

最优化方法Python计算:无约束优化应用——逻辑分类模型

逻辑回归模型更多地用于如下例所示判断或分类场景。 例1 某银行的贷款用户数据如下表&#xff1a; 欠款&#xff08;元&#xff09;收入&#xff08;元&#xff09;是否逾期17000800Yes220002500No350003000Yes440004000No520003800No 显然&#xff0c;客户是否逾期&#xff…...

springboot定时执行某个任务

springboot定时执行某个任务 要定时执行的方法加上Schedule注解 括号内跟 cron表达式 “ 30 15 10 * * &#xff1f;” 代表秒 分 时 日 月 周几 启动类上加上EnableScheduling 注释...

Java EE Servlet之Servlet API详解

文章目录 1. HttpServlet1.1 核心方法 2. HttpServletRequest3. HttpServletResponse 接下来我们来学习 Servlet API 里面的详细情况 1. HttpServlet 写一个 Servlet 代码&#xff0c;都是要继承这个类&#xff0c;重写里面的方法 Servlet 这里的代码&#xff0c;只需要继承…...

neo4j运维管理

管理数据库 概念 Neo4j 5(从v4.0)&#xff0c;可以同时创建和使用多个活动数据库。 DBMS Neo4j是一个数据库管理系统(DBMS)&#xff0c;能够管理多个数据库。DBMS可以管理一个独立的服务器&#xff0c;也可以管理集群中的一组服务器。 实例 Neo4j实例是运行Neo4j服务器代…...

【MYSQL】-函数

&#x1f496;作者&#xff1a;小树苗渴望变成参天大树&#x1f388; &#x1f389;作者宣言&#xff1a;认真写好每一篇博客&#x1f4a4; &#x1f38a;作者gitee:gitee✨ &#x1f49e;作者专栏&#xff1a;C语言,数据结构初阶,Linux,C 动态规划算法&#x1f384; 如 果 你 …...

传统船检已经过时?AR智慧船检来助力!!

想象一下&#xff0c;在茫茫大海中&#xff0c;一艘巨型货轮正缓缓驶过。船上的工程师戴着一副先进的AR眼镜&#xff0c;他们不再需要反复翻阅厚重的手册&#xff0c;一切所需信息都实时显示在眼前。这不是科幻电影的场景&#xff0c;而是智慧船检技术带来的现实变革。那么问题…...

JAVA进化史: JDK11特性及说明

JDK 11&#xff08;Java Development Kit 11&#xff09;是Java平台的一个版本&#xff0c;于2018年9月发布。这个版本引入了一些新特性和改进&#xff0c;以下是其中一些主要特性。 HTTP Client&#xff08;标准化&#xff09; JDK 11引入了一个新的HTTP客户端&#xff0c;用…...

模型 安索夫矩阵

本系列文章 主要是 分享模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。产品市场战略。 1 安索夫矩阵的应用 1.1 江小白的多样化经营策略 使用安索夫矩阵来分析江小白市场战略。具体如下&#xff1a; 根据安索夫矩阵&#xff0c;江小白的现有产品是其白酒产品&…...

性能手机新标杆,一加 Ace 3 发布会定档 1 月 4 日

12 月 27 日&#xff0c;一加宣布将于 1 月 4 日发布新品一加 Ace 3。一加 Ace 系列秉持「产品力优先」理念&#xff0c;从一加 Ace 2、一加 Ace 2V 到一加 Ace 2 Pro&#xff0c;款款都是现象级爆品&#xff0c;得到了广大用户的认可与支持。作为一加 2024 开年之作&#xff0…...

Vue 框架前导:详解 Ajax

Ajax Ajax 是异步的 JavaScript 和 XML。简单来说就是使用 XMLHttpRequest 对象和服务器通信。可以使用 JSON、XML、HTML 和 text 文本格式来发送和接收数据。具有异步的特性&#xff0c;可在不刷新页面的情况下实现和服务器的通信&#xff0c;交换数据或者更新页面 01. 体验 A…...

3分钟快速安装 ClickHouse、配置服务、设置密码和远程登录以及修改数据目录

下面是一个完整的 ClickHouse 安装和配置流程&#xff0c;包括安装 ClickHouse、配置服务、设置密码和远程登录以及修改数据目录。 安装 ClickHouse 安装 YUM 工具包&#xff1a; sudo yum install -y yum-utils添加 ClickHouse YUM 仓库&#xff1a; sudo yum-config-manager…...

PHP8使用PDO对象增删改查MySql数据库

PDO简介 PDO&#xff08;PHP Data Objects&#xff09;是一个PHP扩展&#xff0c;它提供了一个数据库访问层&#xff0c;允许开发人员使用统一的接口访问各种数据库。PDO 提供了一种用于执行查询和获取结果的简单而一致的API。 以下是PDO的一些主要特点&#xff1a; 统一接口…...

证明:切线垂直于半径

证明&#xff1a; 切线垂直于过切点的半径。 下面是网上最简单的证明方法。 证明&#xff1a; 利用反证法。 如下图所示&#xff0c;直线AB和圆O切于点A&#xff0c;假设OA 不垂直于 AB&#xff0c;而 O B ⊥ A B OB \perp AB OB⊥AB&#xff0c;则 ∠ O B A 90 \angle OB…...

普中STM32-PZ6806L开发板(STM32CubeMX创建项目并点亮LED灯)

简介 搭建一个用于驱动 STM32F103ZET6 GPIO点亮LED灯的任务;电路原理图 LED电路原理图 芯片引脚连接LED驱动引脚原理图 创建一个点亮LED灯的Keil 5项目 创建STM32CubeMX项目 New Project -> 单击 -> 芯片搜索STM32F103ZET6->双击创建 初始化时钟 调试设置 一…...

【Windows】共享文件夹拍照还原防火墙设置(入站,出站设置)---图文并茂详细讲解

目录 一 共享文件夹(两种形式) 1.1 普通共享与高级共享区别 1.2 使用 二 拍照还原 2.1 是什么 2.2 使用 三 防火墙设置&#xff08;入栈&#xff0c;出站设置&#xff09; 3.1 引入 3.2 入站出站设置 3.2.1入站出站含义 3.3入站设置 3.4安装jdk 3.5使用tomcat进行访…...

1.决策树

目录 1. 什么是决策树? 2. 决策树的原理 2.1 如何构建决策树&#xff1f; 2.2 构建决策树的数据算法 2.2.1 信息熵 2.2.2 ID3算法 2.2.2.1 信息的定义 2.2.2.2 信息增益 2.2.2.3 ID3算法举例 2.2.2.4 ID3算法优缺点 2.2.3 C4.5算法 2.2.3.1 C4.5算法举例 2.2.4 CART算法 2.2.4…...

基于微信小程序的停车预约系统设计与实现

基于微信小程序的停车预约系统设计与实现 项目概述 本项目旨在结合微信小程序、后台Spring Boot和MySQL数据库&#xff0c;打造一套高效便捷的停车预约系统。用户通过微信小程序进行注册、登录、预约停车位等操作&#xff0c;而管理员和超级管理员则可通过后台管理系统对停车…...

再见2023,你好2024

再见2023&#xff0c;你好2024 生活1月 悲伤与治愈2~4月 运动与偏爱5月 体验与美食6月 婚礼与热爱7~8月 就医与别离9~11月 陪伴与暖房12月 体验&新生 运动追剧读书总结 生活 生活是一个修罗场&#xff0c;来世间一场&#xff0c;要经历丰腴有趣的人生。去体验各种滋味&…...

年度总结|存储随笔2023年度最受欢迎文章榜单TOP15-part1

原创 古猫先生 存储随笔 2023-12-31 08:31 发表于上海 回首2023 2-8月份有近半年时间基本处于断更状态 好在8月份后小编没有松懈 &#xff08;虽然2023年度总结&#xff0c;更像是近4个月总结&#xff09; 本年度顺利加V啦&#xff01; 感谢各位粉丝朋友的一路支持与陪伴 …...

微信小程序 手机号授权登录 偶尔后端解密失败

微信小程序wx.login获取code要在手机号授权前触发 <button:id"code":open-type"hasGetPrivacySetting ? getPhoneNumber|agreePrivacyAuthorization : getPhoneNumber"getphonenumber"onGetPhoneNumber"class"btn"click"cli…...

Mysql 容易忘的 sql 指令总结

目录 一、操作数据库的基本指令 二、查询语句的指令 1、基本查询语句 2、模糊查询 3、分支查询 4、 分组查询 5、分组查询 6、基本查询总结&#xff1a; 7、子查询 8、连接查询 三、MySQL中的常用函数 1、时间函数 2、字符串函数 3、聚合函数 4、运算函数 四、表…...

【SD】tile 模型 - 固定衣服 生成人物 ☑

原理1&#xff1a;tile re 生成固定衣服的人物 tile1-1 re1-1 原理2&#xff1a;tile re 生成随机衣服的人物 tile0.5-1 re0.5-1 原理3&#xff1a;更改动作 必须使用衣服LORA 才可以进行穿衣服 测试大模型&#xff1a;###最爱的模型\meinamix_meinaV11.safe…...

StackOverflowError的JVM处理方式

背景&#xff1a; 事情来源于生产的一个异常日志 Caused by: java.lang.StackOverflowError: null at java.util.stream.Collectors.lambda$groupingBy$45(Collectors.java:908) at java.util.stream.ReduceOps$3ReducingSink.accept(ReduceOps.java:169) at java.util.ArrayL…...

基于DFA算法实现敏感词过滤

何为DFA DFA&#xff0c;全称为Deterministic Finite Automaton&#xff0c;即确定有穷自动机、确定有限状态自动机或确定有限自动机 对于一个给定的属于该自动机的状态和一个属于该自动机字母表Σ的字符&#xff0c;它都能根据事先给定的转移函数转移到下一个状态&#xff0…...

模式识别与机器学习-无监督学习-聚类

无监督学习-聚类 监督学习&无监督学习K-meansK-means聚类的优点&#xff1a;K-means的局限性&#xff1a;解决方案&#xff1a; 高斯混合模型&#xff08;Gaussian Mixture Models&#xff0c;GMM&#xff09;多维高斯分布的概率密度函数&#xff1a;高斯混合模型&#xff…...

Python中property特性属性是什么

在Java中&#xff0c;通常在类中定义的成员变量为私有变量&#xff0c;在类的实例中不能直接通过对象.属性直接操作&#xff0c;而是要通过getter和setter来操作私有变量。 而在Python中&#xff0c;因为有property这个概念&#xff0c;所以不需要写getter和setter一堆重复的代…...

vue3 全局配置Axios实例

目录 前言 配置Axios实例 页面使用 总结 前言 Axios 是一个基于 Promise 的 HTTP 客户端&#xff0c;用于浏览器和 Node.js 环境。它提供了一种简单、一致的 API 来处理HTTP请求&#xff0c;支持请求和响应的拦截、转换、取消请求等功能。关于它的作用&#xff1a; 发起 HTTP …...

EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.【EI级】 Matlab实现TCN-BiGRU-Mult…...

WeNet语音识别分词制作词云图

在线体验 ,点击识别语音需要等待一会&#xff0c;文件太大缓存会报错 介绍 本篇博客将介绍如何使用 Streamlit、jieba、wenet 和其他 Python 库&#xff0c;结合语音识别&#xff08;WeNet&#xff09;和词云生成&#xff0c;构建一个功能丰富的应用程序。我们将深入了解代码…...

Proxyman:现代本地Web调试代理工具

1. 简介 1.1 什么是Proxyman&#xff1f; Proxyman是一款专为macOS设计的现代本地Web调试代理工具&#xff0c;它不仅支持macOS平台&#xff0c;还能无缝地与iOS和Android设备进行集成。作为一个网络调试工具&#xff0c;Proxyman的设计旨在提供高性能、直观且功能丰富的解决…...

k8s中DaemonSet实战详解

一、DaemonSet介绍 DaemonSet 的主要作用&#xff0c;是在 Kubernetes 集群里&#xff0c;运行一个 Daemon Pod。DaemonSet 只管理 Pod 对象&#xff0c;然后通过 nodeAffinity 和 Toleration 这两个调度器参数的功能&#xff0c;保证了每个节点上有且只有一个 Pod。 二、Daem…...

信号处理设计模式

问题 如何编写信号安全的应用程序&#xff1f; Linux 应用程序安全性讨论 场景一&#xff1a;不需要处理信号 应用程序实现单一功能&#xff0c;不需要关注信号 如&#xff1a;数据处理程序&#xff0c;文件加密程序&#xff0c;科学计算程序 场景二&#xff1a;需要处理信…...

Linux权限的基本理解

一:&#x1f6a9;Linux中的用户 1.1&#x1f966;用户的分类 &#x1f31f;在Linux中用户可以被分为两种用户: 超级用户(root):可以在Linux系统中做各种事情而不被约束普通用户:只能做有限的事情被权限约束 在实际操作时超级用户的命令提示符为#,普通用户的命令提示符为$,可…...

AI人工智能大模型讲师叶梓《基于人工智能的内容生成(AIGC)理论与实践》培训提纲

【课程简介】 本课程介绍了chatGPT相关模型的具体案例实践&#xff0c;通过实操更好的掌握chatGPT的概念与应用场景&#xff0c;可以作为chatGPT领域学习者的入门到进阶级课程。 【课程时长】 1天&#xff08;6小时/天&#xff09; 【课程对象】 理工科本科及以上&#xff0…...

nat地址转换

原理 将内网地址转换成外网地址 方式 掌握动态NAT的配置方法 掌握Easy IP的配置方法 掌握NAT Server的配置方法 实验 r1 r2 是内网 ar1 ip地址 ip add ip地址 掩码 ip route-static 0.0.0.0 0 192.168.1.254 默认网关 吓一跳网关 相等于设置了网关 ar2 …...

第12课 循环综合举例

文章目录 前言一、循环综合举例1. 质数判断问题2. 百人百砖问题3. 猴子吃桃问题4. 质因数分解问题5. 数字统计问题。 二、课后练习2. 末尾3位数问题3. 求自然常数e4. 数据统计问题5. 买苹果问题。6. 找5的倍数问题。 总结 前言 本课使用循环结构&#xff0c;介绍了以下问题的解…...

Tuxera NTFS for Mac2024免费Mac读写软件下载教程

在日常生活中&#xff0c;我们使用Mac时经常会遇到外部设备不能正常使用的情况&#xff0c;如&#xff1a;U盘、硬盘、软盘等等一系列存储设备&#xff0c;而这些设备的格式大多为NTFS&#xff0c;Mac系统对NTFS格式分区存在一定的兼容性问题&#xff0c;不能正常读写。 那么什…...

C++ 具名要求

此页面中列出的具名要求&#xff0c;是 C 标准的规范性文本中使用的具名要求&#xff0c;用于定义标准库的期待。 某些具名要求在 C20 中正在以概念语言特性进行形式化。在那之前&#xff0c;确保以满足这些要求的模板实参实例化标准库模板是程序员的重担。若不这么做&#xf…...

大创项目推荐 深度学习二维码识别

文章目录 0 前言2 二维码基础概念2.1 二维码介绍2.2 QRCode2.3 QRCode 特点 3 机器视觉二维码识别技术3.1 二维码的识别流程3.2 二维码定位3.3 常用的扫描方法 4 深度学习二维码识别4.1 部分关键代码 5 测试结果6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天…...

C++初阶——基础知识(函数重载与引用)

目录 1.命名冲突 2.命名空间 3.缺省参数 4.函数重载 1.函数重载的特点包括&#xff1a; 2.函数重载的好处包括&#xff1a; 3.引用 引用的特点包括 引用的主要用途包括 引用和指针 引用 指针 类域 命名空间域 局部域 全局域 第一个关键字 命名冲突 同一个项目之间冲…...

车载电子电器架构 —— 电子电气系统开发角色定义

车载电子电器架构 —— 电子电气系统开发角色定义 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 注:本文12000字,深度思考者进!!! 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的…...

最新Redis7哨兵模式(保姆级教学)

一定一定要把云服务器的防火墙打开一定要&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;否则不成功&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&…...

Redis原理及常见问题

高性能之道 单线程模型基于内存操作epoll多路复用模型高效的数据存储结构redis的单线程指的是数据处理使用的单线程,实际上它主要包含 IO线程:处理网络消息收发主线程:处理数据读写操作,包括事务、Lua脚本等持久化线程:执行RDB或AOF时,使用持久化线程处理,避免主线程的阻…...

nvm 的安装及使用 (Node版本管理器)

目录 1、nvm 介绍 2、nvm安装 3、nvm 使用 4、node官网可以查看node和npm对应版本 5、nvm安装指定版本node 6、安装cli脚手架 1、nvm 介绍 NVM 全称 node.js version management &#xff0c;专门针对 node 版本进行管理的工具&#xff0c;通过它可以安装和切换不同版本的…...

【Yii2】数据库查询方法总结

目录 1.查找单个记录&#xff1a; 2.查找多个记录&#xff1a; 3.条件查询&#xff1a; 4.关联查询&#xff1a; 假设User模型有一个名为orders的多对一关联关系。 5.排序和分组&#xff1a; 6.数据操作&#xff1a; 7.事务处理&#xff1a; 8.命令查询&#xff1a; 9…...

区块链的三难困境是什么,如何解决?

人们需要保持社交、工作和睡眠之间的平衡&#xff0c;并且努力和谐相处。同样的概念也反映在区块链的三难困境中。 区块链三难困境是一个术语&#xff0c;指的是现有区块链的局限性&#xff1a;可扩展性、安全性和去中心化。这是一个存在了几十年的设计问题&#xff0c;其问题的…...

oCPC实践录 | oCPM的秘密

前言 笔者从这几方面介绍oCPM&#xff0c;并一一分析平台侧宣称的oCPM相比oCPC的优势&#xff0c;并解开其中的秘密。 1&#xff09;什么是oCPM? 2&#xff09;oCPC与oCPM的异同 3&#xff09;平台宣称oCPM的优势 4&#xff09;oCPM真正的秘密 5&#xff09;oCPM下的点击率与…...

【Linux Shell学习笔记】Linux Shell的位置参数与函数

一、位置参数 位置参数&#xff0c;也被称之为位置变量&#xff0c;通过位置参数&#xff0c;可以在执行程序的时候&#xff0c;向程序传递数据 1.1 shell接收参数的方法 1.2 向shell传递参数的方法 二、函数 2.1 函数基础 2.1.1 函数简介 函数本质上就是一个代码块&#xf…...

缓存cache和缓冲buffer的区别

近期被这两个词汇困扰了&#xff0c;感觉有本质的区别&#xff0c;搜了一些资料&#xff0c;整理如下 计算机内部的几个部分图如下 缓存&#xff08;cache&#xff09; https://baike.baidu.com/item/%E7%BC%93%E5%AD%98 提到缓存&#xff08;cache&#xff09;&#xff0c;就…...

Vue常见面试问答

vue响应式数据 vue2 Vue2 的对象数据是通过 Object.defineProperty 对每个属性进行监听&#xff0c;当对属性进行读取的时候&#xff0c;就会触发 getter&#xff0c;对属性进行设置的时候&#xff0c;就会触发 setter。 /** * 这里的函数 defineReactive 用来对 Object.def…...