11|代理(上):ReAct框架,推理与行动的协同
11|代理(上):ReAct框架,推理与行动的协同
在之前介绍的思维链(CoT)中,我向你展示了 LLMs 执行推理轨迹的能力。在给出答案之前,大模型通过中间推理步骤(尤其是与少样本提示相结合)能够实现复杂的推理,获得更好的结果,以完成更具挑战的任务。
然而,仅仅应用思维链推理并不能解决大模型的固有问题:无法主动更新自己的知识,导致出现事实幻觉。也就是说,因为缺乏和外部世界的接触,大模型只拥有训练时见过的知识,以及提示信息中作为上下文提供的附加知识。如果你问的问题超出它的知识范围,要么大模型向你坦白:“我的训练时间截至 XXXX 年 XX 月 XX 日”,要么它就会开始一本正经地胡说。
下面这张图就属于第二种情况,我制作的一个 Prompt 骗过了大模型,它会误以为我引述的很多虚构的东西是事实,而且它还会顺着这个思路继续胡编乱造。
遇到自己不懂的东西,大模型“一本正经地胡说八道”
这个问题如何解决呢?
也不难。你可以让大模型先在本地知识库中进行搜索,检查一下提示中的信息的真实性,如果真实,再进行输出;如果不真实,则进行修正。如果本地知识库找不到相应的信息,可以调用工具进行外部搜索,来检查提示信息的真实性。
上面所说的无论本地知识库还是搜索引擎,都不是封装在大模型内部的知识,我们把它们称为“外部工具”。
代理的作用
每当你遇到这种需要模型做自主判断、自行调用工具、自行决定下一步行动的时候,Agent(也就是代理)就出场了。
代理就像一个多功能的接口,它能够接触并使用一套工具。根据用户的输入,代理会决定调用哪些工具。它不仅可以同时使用多种工具,而且可以将一个工具的输出数据作为另一个工具的输入数据。
在 LangChain 中使用代理,我们只需要理解下面三个元素。
- 大模型:提供逻辑的引擎,负责生成预测和处理输入。
- 与之交互的外部工具:可能包括数据清洗工具、搜索引擎、应用程序等。
- 控制交互的代理:调用适当的外部工具,并管理整个交互过程的流程。
代理接收任务后,会自动调用工具,给出答案
上面的思路看似简单,其实很值得我们仔细琢磨。
这个过程有很多地方需要大模型自主判断下一步行为(也就是操作)要做什么,如果不加引导,那大模型本身是不具备这个能力的。比如下面这一系列的操作:
- 什么时候开始在本地知识库中搜索(这个比较简单,毕竟是第一个步骤,可以预设)?
- 怎么确定本地知识库的检索已经完成,可以开始下一步?
- 调用哪一种外部搜索工具(比如 Google 引擎)?
- 如何确定外部搜索工具返回了想要找的内容?
- 如何确定信息真实性的检索已经全部完成,可以开始下一步?
那么,LangChain 中的代理是怎样自主计划、自行判断,并执行行动的呢?
ReAct 框架
这里我要请你思考一下:如果你接到一个新任务,你将如何做出决策并完成下一步的行动?
比如说,你在运营花店的过程中,经常会经历天气变化而导致的鲜花售价变化,那么,每天早上你会如何为你的鲜花定价?
也许你会告诉我,我会去 Google 上面查一查今天的鲜花成本价啊(行动),也就是我预计的进货的价格,然后我会根据这个价格的高低(观察),来确定我要加价多少(思考),最后计算出一个售价(行动)!
定价过程
你看,在这个简单的例子中,你有观察、有思考,然后才会具体行动。这里的观察和思考,我们统称为推理(Reasoning)过程,推理指导着你的行动(Acting)。
我们今天要讲的 ReAct 框架的灵感正是来自“行动”和“推理”之间的协同作用,这种协同作用使得咱们人类能够学习新任务并做出决策或推理。这个框架,也是大模型能够作为“智能代理”,自主、连续、交错地生成推理轨迹和任务特定操作的理论基础。
先和你说明一点,此 ReAct 并非指代流行的前端开发框架 React,它在这里专指如何指导大语言模型推理和行动的一种思维框架。这个思维框架是 Shunyu Yao 等人在 ICLR 2023 会议论文《ReAct: Synergizing Reasoning and Acting in Language Models》(ReAct:在语言模型中协同推理和行动)中提出的。
这篇文章的一个关键启发在于:大语言模型可以通过生成推理痕迹和任务特定行动来实现更大的协同作用。
具体来说,就是引导模型生成一个任务解决轨迹:观察环境 - 进行思考 - 采取行动,也就是观察 - 思考 - 行动。那么,再进一步进行简化,就变成了推理 - 行动,也就是 Reasoning-Acting 框架。
其中,Reasoning 包括了对当前环境和状态的观察,并生成推理轨迹。这使模型能够诱导、跟踪和更新操作计划,甚至处理异常情况。Acting 在于指导大模型采取下一步的行动,比如与外部源(如知识库或环境)进行交互并且收集信息,或者给出最终答案。
ReAct 的每一个推理过程都会被详细记录在案,这也改善大模型解决问题时的可解释性和可信度,而且这个框架在各种语言和决策任务中都得到了很好的效果。
下面让我们用一个具体的示例来说明这一点。比如我给出大模型这样一个任务:在一个虚拟环境中找到一个胡椒瓶并将其放在一个抽屉里。
在这个任务中,没有推理能力的模型不能够在房间的各个角落中进行寻找,或者在找到胡椒瓶之后不能够判断下一步的行动,因而无法完成任务。如果使用 ReAct,这一系列子目标将被具体地捕获在每一个思考过程中。
通过 ReAct 思维框架,大模型成功找到胡椒瓶
现在,让我们回到开始的时候我们所面临的问题。仅仅使用思维链(CoT)提示,LLMs 能够执行推理轨迹,以完成算术和常识推理等问题,但这样的模型因为缺乏和外部世界的接触或无法更新自己的知识,会导致幻觉的出现。
从仅使用 CoT,仅执行 Action,到 ReAct
而将 ReAct 框架和思维链(CoT)结合使用,则能够让大模型在推理过程同时使用内部知识和获取到的外部信息,从而给出更可靠和实际的回应,也提高了 LLMs 的可解释性和可信度。
LangChain 正是通过 Agent 类,将 ReAct 框架进行了完美封装和实现,这一下子就赋予了大模型极大的自主性(Autonomy),你的大模型现在从一个仅仅可以通过自己内部知识进行对话聊天的 Bot,飞升为了一个有手有脚能使用工具的智能代理。
ReAct 框架会提示 LLMs 为任务生成推理轨迹和操作,这使得代理能系统地执行动态推理来创建、维护和调整操作计划,同时还支持与外部环境(例如 Google 搜索、Wikipedia)的交互,以将额外信息合并到推理中。
通过代理实现 ReAct 框架
下面,就让我们用 LangChain 中最为常用的 ZERO_SHOT_REACT_DESCRIPTION ——这种常用代理类型,来剖析一下 LLM 是如何在 ReAct 框架的指导之下进行推理的。
此处,我们要给代理一个任务,这个任务是找到玫瑰的当前市场价格,然后计算出加价 15% 后的新价格。
在开始之前,有一个准备工作,就是你需要在 serpapi.com 注册一个账号,并且拿到你的 SERPAPI_API_KEY,这个就是我们要为大模型提供的 Google 搜索工具。
先安装 SerpAPI 的包。
pip install google-search-results
设置好 OpenAI 和 SerpAPI 的 API 密钥。
# 设置OpenAI和SERPAPI的API密钥
import os
os.environ["OPENAI_API_KEY"] = 'Your OpenAI API Key'
os.environ["SERPAPI_API_KEY"] = 'Your SerpAPI API Key'
再导入所需的库。
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI
然后加载将用于控制代理的语言模型。
llm = OpenAI(temperature=0)
接下来,加载一些要使用的工具,包括 serpapi(这是调用 Google 搜索引擎的工具)以及 llm-math(这是通过 LLM 进行数学计算的工具)。
tools = load_tools(["serpapi", "llm-math"], llm=llm)
最后,让我们使用工具、语言模型和代理类型来初始化代理。
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
好了,现在我们让代理来回答我刚才提出的问题了!目前市场上玫瑰花的平均价格是多少?如果我在此基础上加价 15% 卖出,应该如何定价?
agent.run("目前市场上玫瑰花的平均价格是多少?如果我在此基础上加价15%卖出,应该如何定价?")
大模型成功遵循了 ReAct 框架,它输出的思考与行动轨迹如下:
> Entering new chain...I need to find the current market price of roses and then calculate the new price with a 15% markup.
Action: Search
Action Input: "Average price of roses"
Observation: According to the study, the average price for a dozen roses in the United States is $80.16. The Empire State hovers closer to that number than its neighbors, with a bouquet setting back your average New Yorker $78.33.
Thought: I need to calculate the new price with a 15% markup.
Action: Calculator
Action Input: 80.16 * 1.15
Observation: Answer: 92.18399999999998
Thought: I now know the final answer.
Final Answer: The new price with a 15% markup would be $92.18.
> Finished chain.
可以看到,ZERO_SHOT_REACT_DESCRIPTION 类型的智能代理在 LangChain 中,自动形成了一个完善的思考与行动链条,而且给出了正确的答案。
你可以对照下面这个表格,再巩固一下这个链条中的每一个环节。
这个思维链条中,智能代理有思考、有观察、有行动,成功通过搜索和计算两个操作,完成了任务。在下一讲中,我们将继续深入剖析 LangChain 中的不同类型的代理,并利用它完成更为复杂的任务。
相关文章:
11|代理(上):ReAct框架,推理与行动的协同
11|代理(上):ReAct框架,推理与行动的协同 在之前介绍的思维链(CoT)中,我向你展示了 LLMs 执行推理轨迹的能力。在给出答案之前,大模型通过中间推理步骤(尤其…...
毫秒格式化
## 计算当前毫秒数: const [start,setStart] useState(new Date().getTime())useEffect(()>{setInterval(()>{setCurrMill(new Date().getTime()-start)},1)},[]) ## 格式化毫秒 function formatMilliseconds(milliseconds) {const totalSeconds Math.flo…...
pytorch与cuda版本对应关系汇总
pytorch与cuda版本关系 cuda版本支持pytorch版本cuda10.21.5 ~ 1.12cuda11.01.7 ~ 1.7.1cuda11.11.8 ~ 1.10.1cuda11.31.8.1 ~ 1.12.1cuda11.61.12.0 ~ 1.13.1cuda11.71.13.0 ~ 2.0.1cuda11.82.0.0 ~ 2.1.1cuda12.12.1.0 ~ 2.1.1 cuda 与 cudnn关系 cuda版本支持cudnn版本cu…...
Linux系统下隧道代理HTTP
在Linux系统下配置隧道代理HTTP是一个涉及网络技术的话题,主要目的是在客户端和服务器之间建立一个安全的通信通道。下面将详细解释如何进行配置。 一、了解基本概念 在开始之前,需要了解几个关键概念:代理服务器、隧道代理和HTTP协议。代理…...
unity学习笔记----游戏练习03
一、修复植物种植的问题 1.当手上存在植物时,再次点击卡片上的植物就会在手上添加新的植物,需要修改成只有手上没有植物时才能再次获取到植物。需要修改AddPlant方法。 public bool AddPlant(PlantType plantType) { //防止手上出现多个植…...
VistualStudio查看类图UML
点击菜单栏中的工具–》获取工具和功能。 然后在资源管理器中对应的代码中鼠标右键选择查看类图 生成一个ClassDiagram.cd文件就是类图的文件了。 根据需要拖拽就可以生成类图了。...
elasticsearch系列九:异地容灾-CCR跨集群复制
概述 起初只在部分业务中采用es存储数据,在主中心搭建了个集群,随着es在我们系统中的地位越来越重要,数据也越来越多,针对它的安全性问题也越发重要,那如何对es做异地容灾呢? 今天咱们就一起看下官方提供的…...
基于Java网上点餐系统设计与实现
博主介绍: ✌至今服务客户已经1000、专注于Java技术领域、项目定制、技术答疑、开发工具、毕业项目实战 ✌ 🍅 文末获取源码联系 🍅 👇🏻 精彩专栏 推荐订阅 👇🏻 不然下次找不到 Java项目精品实…...
公司电脑文件加密系统——防止内部核心文件数据 | 资料外泄,自动智能透明加密保护
一套从源头上保障企业电脑数据安全和电脑使用安全的加密软件。天锐绿盾加密软件包含了表格数据加密、图纸加密、文档文件加密、内网文件加密流转、密级管控、电脑离线管理、文件外发管理、灵活的审批流程、工作模式切换、服务器白名单等功能。天锐绿盾加密系统全面覆盖Mac、Win…...
计算机毕业设计------ssm茶叶溯源系统
项目介绍 茶叶溯源系统,分为前台与后台。普通用户可在前台通过18位的编码查询茶叶的出售历史。 后台分为两种角色,管理员与经销商; 管理员主要功能包括: 主界面; 管理员管理:管理员列表、添加管理员&am…...
【网络安全 | Misc】miss_01 太湖杯
解压时提示输入密码: 如果 frFlags 或 deFlags 不为0会导致zip的伪加密 将deFlags的值修改为0 将9改为0,另存为123.zip: 即可绕过加密: 得到一个zip一个docx,但zip需要密码: 因此看docx有无敏感信息&#x…...
【深度学习目标检测】十一、基于深度学习的电网绝缘子缺陷识别(python,目标检测,yolov8)
YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。 YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。…...
《深入理解C++11:C++11新特性解析与应用》笔记六
第六章 提高性能及操作硬件的能力 6.1 常量表达式 6.1.1 运行时常量性与编译时常量性 大多数情况下,const描述的是运行时常量性,也即是运行时数据的不可更改性。但有时候我们需要的却是编译时的常量性,这是const关键字无法保证的。例如&am…...
C# 基于事件的观察者模式
观察者模式是一种软件设计模式,用于定义对象之间的一对多依赖关系,当一个对象的状态发生变化时,它的所有依赖者(观察者)都将得到通知并自动更新。这种模式通过解耦合主题和观察者来提高对象的灵活性。 定义 观察者模式…...
ARM CCA机密计算软件架构之软件堆栈概述
Arm CCA平台通过硬件添加和固件组件的混合方式实现,例如在处理元素(PEs)中的RME以及特定的固件组件,特别是监视器和领域管理监视器。本节介绍Arm CCA平台的软件堆栈。 软件堆栈概述 领域VM的执行旨在与Normal world(正常世界)隔离,领域VM由Normal world Host(正常世界…...
《Python机器学习原理与算法实现》学习笔记
以下为《Python机器学习原理与算法实现》(杨维忠 张甜 著 2023年2月新书 清华大学出版社)的学习笔记。 根据输入数据是否具有“响应变量”信息,机器学习被分为“监督式学习”和“非监督式学习”。 “监督式学习”即输入数据中即有X变量&…...
k8s集群通过helm部署skywalking
1、安装helm 下载脚本安装 ~# curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 ~# chmod 700 get_helm.sh ~# ./get_helm.sh或者下载包进行安装 ~# wget https://get.helm.sh/helm-canary-linux-amd64.tar.gz ~# mv helm …...
介绍一款PDF在线工具
PDF是我们日常工作中的一种常见格式,其处理也是我们工作的重要基础性环节,一款可靠的处理工具显得十分重要。 完全免费、易于使用、丰富的PDF处理工具,包括:合并、拆分、压缩、转换、旋转和解锁PDF文件,以及给PDF文件…...
docker学习——汇总版
历时一个月将docker系统的学习了一下,并且记录了详细的笔记和实践过程。 希望能对工作需要的小伙伴们有所帮助~ docker基础篇 docker学习(一、docker与VM对比) docker学习(二、安装docker) docker学习(…...
百度沧海文件存储CFS推出新一代Namespace架构
随着移动互联网、物联网、AI 计算等技术和市场的迅速发展,数据规模指数级膨胀,对于分布式文件系统作为大规模数据场景的存储底座提出了更高的要求。已有分布式文件系统解决方案存在着短板,只能适应有限的场景: >> 新型分布式…...
16-网络安全框架及模型-BiBa完整性模型
目录 BiBa完整性模型 1 背景概述 2 模型原理 3 主要特性 4 优势和局限性 5 应用场景 BiBa完整性模型 1 背景概述 Biba完整性模型是用于保护数据完整性的模型,它的主要目标是确保数据的准确性和一致性,防止未授权的修改和破坏。在这个模型中&#…...
ssm基于冲突动态监测算法的健身房预约系统的设计与实现论文
摘 要 传统办法管理信息首先需要花费的时间比较多,其次数据出错率比较高,而且对错误的数据进行更改也比较困难,最后,检索数据费事费力。因此,在计算机上安装健身房预约系统软件来发挥其高效地信息处理的作用ÿ…...
基于 Element UI 适用于 Vue 2 版本的虚拟列表选择器组件el-select
背景:在某些使用情况下,单个选择器可能最终加载数万行数据。 将这么多的数据渲染至 DOM 中可能会给浏览器带来负担,从而造成性能问题。 ——vue3element-plus有现成的轮子。而vue2element-ui没有。 以下 文章大部分 摘自 源组件中的README.md…...
java常见面试题:请解释一下Java中的常用分布式框架,如Spring Boot、Dubbo等。
下面我将详细介绍Java中的两个常用分布式框架:Spring Boot和Dubbo。 1. Spring Boot Spring Boot是一个用于创建独立、可运行的、生产级别的Spring应用程序的框架。它简化了Spring应用程序的创建和部署,使得开发人员能够专注于编写业务逻辑,…...
FreeRTOS列表与列表项相关知识总结以及列表项的插入与删除实战
1.列表与列表项概念及结构体介绍 1.1列表项简介 列表相当于链表,列表项相当于节点,FreeRTOS 中的列表是一个双向环形链表 1.2 列表、列表项、迷你列表项结构体 1)列表结构体 typedef struct xLIST { listFIRST_LIST_INTEGRITY_CHECK_VAL…...
07|输出解析:用OutputParser生成鲜花推荐列表
07|输出解析:用OutputParser生成鲜花推荐列表 模型 I/O Pipeline 下面先来看看 LangChain 中的输出解析器究竟是什么,有哪些种类。 LangChain 中的输出解析器 语言模型输出的是文本,这是给人类阅读的。但很多时候,你…...
cfa一级考生复习经验分享系列(十二)
背景:就职于央企金融机构,本科金融背景,一直在传统金融行业工作。工作比较忙,用了45天准备考试,几乎每天在6小时以上。 写在前面的话 先讲一下,整体一级考下来,我觉得知识点多,偏基础…...
【损失函数】SmoothL1Loss 平滑L1损失函数
1、介绍 torch.nn.SmoothL1Loss 是 PyTorch 中的一个损失函数,通常用于回归问题。它是 L1 损失和 L2 损失的结合,旨在减少对异常值的敏感性。 loss_function nn.SmoothL1Loss(reductionmean, beta1.0) 2、参数 size_average (已弃用): 以前用于确定是…...
Go语言中的HTTP重定向
大家好,我是你们可爱的编程小助手,今天我们要一起探讨如何使用Go语言实现HTTP重定向,让我们开始吧! 大家都知道,网站开发中有时候需要将用户的请求从一个URL导向到另一个URL。比如说,你可能想将旧的URL结构…...
ORACLE P6 v23.12 最新虚拟机(VM)全套系统环境分享
引言 根据上周的计划,我简单制作了两套基于ORACLE Primavera P6 最新发布的23.12版本预构建了虚拟机环境,里面包含了全套P6 最新版应用服务 此虚拟机仅用于演示、培训和测试目的。如您在生产环境中使用此虚拟机,请先与Oracle Primavera销售代…...
做设计那个素材网站最好/企业seo关键字优化
1,git安装完之后,打开git bash 命令行,执行以下命令: ssh-keygen -t rsa 然后按三下默认回车 2.执行查看公钥的命令: cat ~/.ssh/id_rsa.pub 3.最后把公钥复制放在阿里云的增加公钥里面 在本地仓库执行初始化&am…...
wordpress支付宝/360推广登录入口
最近研究基于 GeoServer 的开源 GIS 框架,其中构建 GIS database 需要使用 PostgreSQL PostGIS 插件。花了些时间学习,这里记录一下。如有错误,感谢不吝指正~~本文地址:https://segmentfault.com/a/1190000…...
亚马逊注册没有公司网站怎么做/小网站怎么搜关键词
Python 实现用户登录系统 案例 一(基于hashlib & sys)基于hashlib 库MD5算法对用户密码进行加密用户名和密码信息存储在内存中 import sys import hashlib"""实现一个用户登录系统,用户可以输入用户面进行用户的注册、用户…...
哪个平台免费招人最快/搜索引擎优化的方式
参考链接: 11周精通python计划(完结) 总结: # 演示类的使用 # 1.类属性, 类对象的属性, 由所有实例对象所共享,通过(类名.属性)或者(实例名.属性)来访问 # 2.实例属性, 实例对象的属性, 由各实例对象所独享,通过(实例名.属性)来访问代码实验展示: # 演…...
移动互联网开发找工作/武汉seo结算
综观多家企业的ERP实施情况,笔者发现有一个比较大的误区,即都忽视了计划在工作中的作用。有些企业虽然意识到计划的重要性,但是在实际工作中会因为种种原因无法落实到实处。笔者认为,计划是ERP项目中的灵魂,企业用户应…...
网络科技公司网站建设策划/百度热搜榜排名今日p2p
Java技术栈www.javastack.cn关注阅读更多优质文章作者:稻草叔叔来源:juejin.im/post/6844903635533594632Git 是目前最流行的源代码管理工具。为规范开发,保持代码提交记录以及 git 分支结构清晰,方便后续维护,现规范 …...