当前位置: 首页 > news >正文

32阵元 MVDR和DREC DOA估计波束方向图对比

32阵元 MVDR和DREC DOA估计波束方向图对比

一、原理

MVDR原理:https://zhuanlan.zhihu.com/p/457528114

DREC原理(无失真响应特征干扰相消器):http://radarst.ijournal.cn/html/2019/3/201903018.html

主要参数:
阵元:32个阵元,可以设置。
期望信号:1个,角度、信噪比可以设置。
干扰信号:2个,角度、信噪比可以设置。

二、效果

波束方向图效果:
在这里插入图片描述

三、代码

部分代码:

clc;
clear all;
close all;
%% 
v=2;    %波长为2
d =v/2; %阵元间距
N=32;   %阵元个数
theta_3db = 2/N*180/pi; %-3db波束宽度
for ix=1:1:NA(ix,1)=(ix-1)*d;%阵元间距向量
end%% 接收信号模型
fs=10;  %信号频率
fj1=1;  %干扰1频率
fj2=2;  %干扰2频率SNR= -10; %信噪比
JNR1=20;  %干噪比1
JNR2=20;  %干噪比2theta_s=10*pi/180;  %信号入射方向
theta_j1=20*pi/180; %干扰1,间距大于主瓣宽度
theta_j2=25*pi/180; %干扰2,间距大于主瓣宽度A0=sqrt(10^(SNR/10)); %信号幅度
A1=sqrt(10^(JNR1/10));%干扰1幅度
A2=sqrt(10^(JNR2/10));%干扰2幅度
for k=1:1:Nas(k,1)=exp(j*2*pi*sin(theta_s)*A(k,1)/v);  %信号方向导向矢量aj1(k,1)=exp(j*2*pi*sin(theta_j1)*A(k,1)/v);%干扰1方向导向矢量aj2(k,1)=exp(j*2*pi*sin(theta_j2)*A(k,1)/v);%干扰2方向导向矢量
end
M =1000;%快拍数
t=0:1/(4*fs):(M-1)/(4*fs);%快拍时间T=length(t);%快拍时间长度
S0=A0*exp(sqrt(-1)*(2*pi*fs*t+pi*rand(1,T)));    %构造信号   
J1=A1*exp(sqrt(-1)*(2*pi*fj1*t+pi*rand(1,T)));   %构造干扰信号1 
J2=A2*exp(sqrt(-1)*(2*pi*fj2*t+pi*rand(1,T)));   %构造干扰信号2 S=as*S0;  %信号乘以信号方向导向矢量
I1=aj1*J1;%干扰1乘以干扰1方向导向矢量
I2=aj2*J2;%干扰2乘以干扰2方向导向矢量Noise=zeros(N,T);%构造归一化高斯噪声
for k=1:1:NNoise(k,:)=(randn(1,T)+sqrt(-1)*randn(1,T))/sqrt(2);
endX=S+I1+I2+Noise; % 叠加两个干扰信号和噪声,得到新的信号X
R=X*X'/T;        % 干扰和噪声的协方差矩阵%% 图形绘制
figure(1);
Fa=20*log10(abs(F_s)./max_st); %归一化方向图 db
plot(theta_scan/pi*180, Fa,'b');hold on
Fa=20*log10(abs(Fsum)./maxs);%归一化方向图 db
plot(theta_scan/pi*180, Fa,'r'); grid on;Fa1=20*log10(abs(Fsum1)./maxs1);%归一化方向图 db
plot(theta_scan/pi*180, Fa1,'g');
xlabel('theta/°');
ylabel('幅度/dB');
title('波束方向图');
legend('原始波束扫描方向图','MVDR波束方向图','DREC波束方向图')

四、信噪比SNR和信干噪比SINR的关系

信噪比的表达式为:

S N R = 10 lg ⁡ P S P N S N R=10 \lg \frac{P_S}{P_N} SNR=10lgPNPS,其中:

SNR:信噪比,单位是dB。
PS:信号的有效功率。
PN:噪声的有效功率。

信干噪比SINR(Signal to Interference plus Noise Ratio)指的是系统中信号与干扰和噪声之和的比。

信干噪比表达式为:

S I N R = 10 lg ⁡ P S P I + P N S I N R=10 \lg \frac{P_S}{P_I+P_N} SINR=10lgPI+PNPS,其中:

SINR:信干噪比,单位是dB。
PS:信号的有效功率。
PN:噪声的有效功率。
PI:干扰信号的有效功率。

由上述理论可知,SNR增加,即相对于Ps增加,当PI和PN不变时,SINR会逐渐增大,如下图所示是SNR和SINR的关系:
在这里插入图片描述

五、干噪比INR和信干噪比SINR的关系

由第四节所述,当干噪比INR增加时,相当于PI增加,因此当PN和PS不变时,SINR会逐渐降低。如下图所示:
在这里插入图片描述
代码下载链接:https://mbd.pub/o/bread/ZZicm5Zy

相关文章:

32阵元 MVDR和DREC DOA估计波束方向图对比

32阵元 MVDR和DREC DOA估计波束方向图对比 一、原理 MVDR原理:https://zhuanlan.zhihu.com/p/457528114 DREC原理(无失真响应特征干扰相消器):http://radarst.ijournal.cn/html/2019/3/201903018.html 主要参数: 阵…...

OpenCV-11颜色通道的分离与合并

本次我们使用两个比较重要的API split(mat)将图像的通道进行分割。 merge((ch1,ch2,ch3))将多个通道进行融合。 示例代码如下: import cv2 import numpy as npimg np.zeros((480, 640, 3),…...

从0到1入门C++编程——01 C++基础知识

文章目录 一、工具安装二、新建项目三、设置字体、注释、行号四、C基础知识1.数据类型2.输入输出3.运算符4.选择、循环结构5.跳转语句6.数组7.函数8.指针9.结构体 一、工具安装 学习C使用到的工具是Visual Studio,Visual Studio 2010旗舰版下载链接:点此…...

C#编程-编写和执行C#程序2

C#编程-编写和执行C#程序 问题陈述 Dvid所在的团队正在为网球比赛开发自动排名软件。他负责创建一个程序来接受网球选手的以下详细信息并将其显示在屏幕上: 1.姓名 2.排名 您需要帮助David创建该程序。 要创建所需的程序,David需要执行以下步骤: 1.打开“记事本”。 2.在“…...

Day02-ES6

一.proxy代理 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head>…...

2023年12月记录内容管理

文章目录 前言1.[vue构建项目](https://mp.csdn.net/mp_blog/creation/editor/134829688)2. [Nodejs后端express框架](https://mp.csdn.net/mp_blog/creation/editor/134841711)3. [前端知识点](https://mp.csdn.net/mp_blog/creation/editor/132810879)4.[前端知识点-vue篇&am…...

【测试基础】构造测试数据之 MySQL 篇

构造测试数据之 MySQL 篇 作为一名测试工程师&#xff0c;我们经常会构造测试数据进行一些功能验证。为了暴露更多的问题&#xff0c;在测试数据的构造上&#xff0c;我们应该尽可能的构造不同类型字段的数据&#xff0c;且一张表的字段最好不低于 10 10 10 个。 对于 MySQL …...

基于单片机的语音识别自动避障小车(论文+源码)

1.系统设计 此次基于单片机的语音识别自动避障小车&#xff0c;以STC89C52单片机作为系统的主控制器&#xff0c;利用超声波模块来实现小车与障碍物距离的测量并通过LCD液晶显示&#xff0c;当距离低于阈值时会通过WT588语音模块进行报警提示&#xff0c;并且小车会后退来躲避…...

2023年“中银杯”四川省职业院校技能大赛“云计算应用”赛项样题卷①

2023年“中银杯”四川省职业院校技能大赛“云计算应用”赛项&#xff08;高职组&#xff09; 样题&#xff08;第1套&#xff09; 目录 2023年“中银杯”四川省职业院校技能大赛“云计算应用”赛项&#xff08;高职组&#xff09; 样题&#xff08;第1套&#xff09; 模块一…...

【信息安全原理】——入侵检测与网络欺骗(学习笔记)

&#x1f4d6; 前言&#xff1a;在网络安全防护领域&#xff0c;防火墙是保护网络安全的一种最常用的设备。网络管理员希望通过在网络边界合理使用防火墙&#xff0c;屏蔽源于外网的各类网络攻击。但是&#xff0c;防火墙由于自身的种种限制&#xff0c;并不能阻止所有攻击行为…...

JVM GC 算法原理概述

对于JVM的垃圾收集&#xff08;GC&#xff09;&#xff0c;这是一个作为Java开发者必须了解的内容&#xff0c;那么&#xff0c;我们需要去了解哪些内容呢&#xff0c;其实&#xff0c;GC主要是解决下面的三个问题&#xff1a; 哪些内存需要回收&#xff1f; 什么时候回收&…...

【数值分析】LU分解解Ax=b,matlab自己编程实现

LU分解&#xff08;直接三角分解&#xff0c;Doolittle分解&#xff09; A x b , A L U Axb \,\,,\,\, ALU Axb,ALU { L y b U x y \begin{cases} Lyb \\ Uxy \end{cases} {LybUxy​ 矩阵 L {L} L 的对角元素为 1 {1} 1 &#xff0c;矩阵 U {U} U 的第一行和 A {A} A …...

华为HCIE-Datacom课程介绍

厦门微思网络HCIE-Datacom课程介绍 一、认证简介 HCIE-Datacom&#xff08;Huawei Certified ICT Expert-Datacom&#xff09;认证是华为认证体系中的顶级认证&#xff0c;HCIE-Datacom认证定位具备坚实的企业网络跨场景融合解决方案理论知识&#xff0c;能够使用华为数通产品…...

QT(C++)-QTableWight添加行和删除空行

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 1、前言2、QTableWidget的添加行3、删除行 1、前言 最近要用QT开发项目&#xff0c;对QT不是很熟&#xff0c;就根据网上的查到的知识和自己的摸索&#xff0c;将一…...

软件测试/测试开发丨Python 面向对象编程思想

面向对象是什么 Python 是一门面向对象的语言面向对象编程&#xff08;OOP&#xff09;&#xff1a;Object Oriented Programming 所谓的面向对象&#xff0c;就是在编程的时候尽可能的去模拟真实的现实世界&#xff0c;按照现实世界中的逻辑去处理问题&#xff0c;分析问题中…...

一次降低进程IO延迟的性能优化实践——基于block层bfq调度器

如果有个进程正频繁的读写文件&#xff0c;此时你vim查看一个新文件&#xff0c;将会出现明显卡顿。即便你vim查看的文件只有几十M&#xff0c;也可能会出现卡顿。相对的&#xff0c;线上经常遇到IO敏感进程偶发IO超时问题。这些进程一次读写的文件数据量很少&#xff0c;正常几…...

C语言易错知识点十(指针(the final))

❀❀❀ 文章由不准备秃的大伟原创 ❀❀❀ ♪♪♪ 若有转载&#xff0c;请联系博主哦~ ♪♪♪ ❤❤❤ 致力学好编程的宝藏博主&#xff0c;代码兴国&#xff01;❤❤❤ 许久不见&#xff0c;甚是想念&#xff0c;真的是时间时间&#xff0c;你慢些吧&#xff0c;不能再让头发变秃…...

React 18 新增的钩子函数

React 18 引入了一些新的钩子函数&#xff0c;用于处理一些常见的场景和问题。以下是 React 18 中引入的一些新钩子函数以及它们的代码示例和使用场景&#xff1a; useTransition&#xff1a; 代码示例&#xff1a;import { useTransition } from react;function MyComponent()…...

安装与部署Hadoop

一、前置安装准备1、机器2、java3、创建hadoop用户 二、安装Hadoop三、环境配置1、workers2、hadoop-env.sh3、core-site.xml4、hdfs-site.xml5、linux中Hadoop环境变量 四、启动hadoop五、验证 一、前置安装准备 1、机器 主机名ip服务node1192.168.233.100NameNode、DataNod…...

MySQL 8.0 InnoDB Tablespaces之General Tablespaces(通用表空间/一般表空间)

文章目录 MySQL 8.0 InnoDB Tablespaces之General Tablespaces&#xff08;通用表空间/一般表空间&#xff09;General tablespaces&#xff08;通用表空间/一般表空间&#xff09;通用表空间的功能通用表空间的限制 创建通用表空间&#xff08;一般表空间&#xff09;创建语法…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...