python命令大全及说明,python命令大全下载
大家好,本文将围绕python命令大全及说明展开说明,python命令大全下载是一个很多人都想弄明白的事情,想搞清楚python简单命令语句需要先了解以下几个事情。

Python有哪些常用但容易忘记的命令?
- 1 如何忽略报错信息
- 2 Python常见绘图系列代码
-
- 2.1 绘制对比箱线图
- 2.2 分区绘制图形
- 2.3 绘制相关系数图(热图)
- 2.4 绘制计数的条形图countplot
- 2.5 直方图和核密度图的合体distplot
- 3 绘图函数封装
-
- 3.1 1×2的直方图封装
- 3.2 1×2的对比箱线图封装
- 3.3 1×2的【1+对数】对比箱线图封装
- 3.4 统计量计算的函数封装
- 4 如何取消科学计数法
- 5 删去几倍标准差之外的离群值
-
- 5.1 单变量独自剔除
- 5.2 滚动剔除
- 6 参考
1 如何忽略报错信息
import warnings
warnings.filterwarnings('ignore')
2 Python常见绘图系列代码
在数据分析的过程中,经常会遇到一个很麻烦的问题,就是中文无法显示,这个困难真的会困扰很多同学包括我在内,还好终于找到了问题的解决办法,在之前的一篇博客中已经涉及到了,详情戳:机器学习 | 特征重要性判断
下面就详细分开的说下每种图该怎么画!
2.1 绘制对比箱线图
参数:
- 直接x和y即可。x表示分类型变量,y表示数值型变量
- data表示数据框
- 如果绘图希望箱子有顺序,就加上order这个参数!
p1 = sns.boxplot(x = 'type_now', y = '7_active_days', data=df, order=['高活','中活','低活','不活'])
plt.savefig('plot/3-1.png')
plt.show()
注:倒数第二行的命令是保存图片,具体看需求,最后一个命令是显示图片python使用turtle函数绘制树图形。有时候jupyter无法显示图片,还得再运行一下ok,有点玄学,不过在命令框的前面加上一个魔法命令就可以解决了:
%matplotlib inline
绘制后的效果见下图:
2.2 分区绘制图形
有时候希望画成1×2 或者 2×1的图形,具体如何实现呢?
代码:
f, (ax1,ax2) = plt.subplots(1, 2, figsize=(10, 6))
sns.distplot(df['event_columnx'], ax=ax1)
sns.distplot(df['event_columnx_now'], ax=ax2)
plt.savefig('plot/3-4.png')
plt.show()
参数:
- 首先是plt.subplots 注意有s 其中1 2 表示1行2列,即第一个参数为行数,第二个参数为列数。figsize调节大小。
- 在分图中加入参数ax,即ax=ax1或者ax2 表示具体位置!
效果:
2.3 绘制相关系数图(热图)
import seaborn as sns
import matplotlib.pyplot as plt
def test(df):dfData = df.corr()plt.subplots(figsize=(9, 9)) # 设置画面大小sns.heatmap(dfData, annot=False, vmax=1, square=True, cmap="Blues")plt.savefig('./相关系数图.png')plt.show()
绘图后效果见下图:
2.4 绘制计数的条形图countplot
先上图:
起到的作用:
- 统计分类型变量1不同水平下各自有分类变量2的频数。绘制条形图!
- 是不是有点绕!看上面的图就懂了!还是很强的一个绘图函数
代码:
ax = sns.countplot(x = 'type', hue = 'type_now', data = df, order=['高活','中活','低活','不活'])
plt.savefig('plot/3-1-2.png')
plt.show()
参数:
- x:表示分类型变量1
- hue:表示分类型变量2
- data:数据框
- order:表示分类变量1的顺序
补充:
- 对于上图中标签和图形重叠在一起,有一种解决方式是调大图形的长和宽!具体见下图:

一开始加一行代码即可:
# 调整figsize
f, ax = plt.subplots(figsize=(12, 8))
2.5 直方图和核密度图的合体distplot
代码:
f, ax = plt.subplots(figsize=(10, 8))
sns.distplot(df['session_count'], kde=True)
plt.savefig('plot/3-3-3.png')
plt.show()
效果:
参数:
- kde=True 表示核密度估计的曲线也画出来!
- 直接displot
3 绘图函数封装
3.1 1×2的直方图封装
代码:
def PlotHis2(col1, col2, pic_name):# 函数作用:绘制1×2的直方图# col1:表示变量1# col2:表示变量2# pic_name:图片保存后的名称# 注:其实更合适一点是加入数据框的名称import numpy as npnp.set_printoptions(suppress=True)f, (ax1,ax2) = plt.subplots(1, 2, figsize=(10, 6))sns.distplot(df[col1], ax=ax1)sns.distplot(df[col2], ax=ax2)plt.savefig('plot/' + pic_name + '.png')plt.show()
效果见下图:
3.2 1×2的对比箱线图封装
代码:
def PlotBox2(col1, col2, pic_name):# 函数作用:绘制1×2的直方图# col1:表示变量1# col2:表示变量2# pic_name:图片保存后的名称# 注:其实更合适一点是加入数据框的名称import numpy as npnp.set_printoptions(suppress=True)f, (ax1,ax2) = plt.subplots(1, 2, figsize=(10, 6))sns.boxplot(x = 'type_now', y=col1, data=df, ax=ax1, order=['高活','中活','低活','不活'])sns.boxplot(x = 'type_now', y=col2, data=df, ax=ax2, order=['高活','中活','低活','不活'])plt.savefig('plot/' + pic_name + '.png')plt.show()
效果见下图:
3.3 1×2的【1+对数】对比箱线图封装
代码:
import numpy as np
def to_log(x):return np.log(1+x)
def PlotBoxLog2(col1, col2, pic_name):f, (ax1,ax2) = plt.subplots(1, 2, figsize=(10, 6))log_col1 = 'log_' + col1log_col2 = 'log_' + col2df[log_col1] = df[col1].map(to_log)df[log_col2] = df[col2].map(to_log)sns.boxplot(x = 'type_now', y=log_col1, data=df, ax=ax1, order=['高活','中活','低活','不活'])sns.boxplot(x = 'type_now', y=log_col2, data=df, ax=ax2, order=['高活','中活','低活','不活'])plt.savefig('plot/' + pic_name + '.png')plt.show()
效果见下图:
3.4 统计量计算的函数封装
代码:
def CalVar(col1, col2):import numpy as npnp.set_printoptions(suppress=True)cols = [col1, col2]for col in cols:print('变量 %s 描述统计计算结果如下:' % col)print(df[col].describe())print('--------********-------')
代码执行层面:
CalVar('event_columnx', 'event_columnx_now')
实现效果:
4 如何取消科学计数法
import numpy as np
np.set_printoptions(suppress=True)
5 删去几倍标准差之外的离群值
5.1 单变量独自剔除
函数代码:
def RemoveValue_sole(df_model, col, s):# 其中s作用是统计总共有多少行记录被删去r1 = df_model.shape[0]v_mean = df_model[col].mean()v_std = df_model[col].std()thrhol = v_mean + 10 * v_stddf_model = df_model[df_model[col]<=thrhol]r2 = df_model.shape[0]s = s + r1 - r2print('列 %s 删除10倍以上标准差的数值 共删除的行数为: %d ' % (col, r1-r2))return s
实现剔除代码:
s = 0
for col in model_col:# 其中model_col为事先定义好的需要剔除异常值的变量!s = RemoveValue_sole(df_model, col, s)
print(s)
实现效果见下:
可以看到总共是4027个被单独剔除!但是df_model好像是不动的?
5.2 滚动剔除
啥叫滚动剔除?就是一个变量异常值被剔除之后,在这个被剔除异常值的数据框的基础之上再考虑下一个变量,继续下去!应用相较于第一种应该是广泛的!
代码:
def RemoveValue(df_model, col):r1 = df_model.shape[0]v_mean = df_model[col].mean()v_std = df_model[col].std()thrhol = v_mean + 10 * v_stddf_model = df_model[df_model[col]<=thrhol]r2 = df_model.shape[0]print('列 %s 删除10倍以上标准差的数值 共删除的行数为: %d ' % (col, r1-r2))return df_model
滚动剔除代码:
for col in model_col:df_model = RemoveValue(df_model, col)# 每一次赋值返回均为df_model 这样就能起到滚动的作用!
print(df_model.shape)
实现效果见下:
6 参考
- https://www.cnblogs.com/noahzn/p/4133252.html
- displot参考:https://www.jianshu.com/p/844f66d00ac1
- mac的jupyter绘图中文如何显示:机器学习 | 特征重要性判断_机器学习特征重要性排序-CSDN博客
相关文章:
python命令大全及说明,python命令大全下载
大家好,本文将围绕python命令大全及说明展开说明,python命令大全下载是一个很多人都想弄明白的事情,想搞清楚python简单命令语句需要先了解以下几个事情。 Python有哪些常用但容易忘记的命令? 1 如何忽略报错信息2 Python常见绘图…...
Flink1.17实战教程(第五篇:状态管理)
系列文章目录 Flink1.17实战教程(第一篇:概念、部署、架构) Flink1.17实战教程(第二篇:DataStream API) Flink1.17实战教程(第三篇:时间和窗口) Flink1.17实战教程&…...
ES慢查询分析——性能提升6 倍
问题 生产环境频繁报警。查询跨度91天的数据,请求耗时已经来到了30s。报警的阈值为5s。我们期望值是5s内,大于该阈值的请求,我们认为是慢查询。这些慢查询,最终排查,是因为走到了历史集群上。受到了数据迁移的一定影响…...
[NAND Flash 4.3] 闪存的物理学原理_NAND Flash 的读、写、擦工作原理
依公知及经验整理,原创保护,禁止转载。 专栏 《深入理解NAND Flash》 <<<< 返回总目录 <<<< 2.1.3.1 Flash 的物理学原理与发明历程 经典物理学认为 物体越过势垒,有一阈值能量;粒子能量小于此能量则不能越过,大于此能 量则可以越过。例如骑自行…...
海豚调度 Dolphinscheduler-3.2.0/DolphinScheduler-3.1.9 离线部署 伪集群模式
Dolphinscheduler-3.2.0(离线)伪集群模式 一、依赖(前置准备工作) 1.JDK:版本要求 JDK(1.8),安装并配置 JAVA_HOME 环境变量,并将其下的 bin 目录追加到PATH 环境变量中; 2.数据库:PostgreSQL(8.2.15) 或者MySQL(5.7),两者任选其一即可,如 MySQL 则需要…...
4.33 构建onnx结构模型-Expand
前言 构建onnx方式通常有两种: 1、通过代码转换成onnx结构,比如pytorch —> onnx 2、通过onnx 自定义结点,图,生成onnx结构 本文主要是简单学习和使用两种不同onnx结构, 下面以 Expand 结点进行分析 方式 方法一…...
LeetCode——1599. 经营摩天轮的最大利润
通过万岁!!! 题目:就是一个摩天轮,一共有4个仓位,一个仓位中最多可以做4个人。然后每次上一个人boardingCost钱,但是我们转动1/4圈,需要的成本是runningCost。然后给我们一个数组cu…...
从 MySQL 的事务 到 锁机制 再到 MVCC
其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、事务 1.1 含义 1.2 ACID 二、锁机制 2.1 锁分类 2.2 隔离级别 三、MVCC 3.1 介绍 3.2 隔离级别 3.3 原理 四、总结 前…...
PostGreSQL远程连接
1、找到PostGreSQL安装目录,修改“postgresql.conf”配置文件(安装路径\data\postgresql.conf)。 若不知道安装目录,则通过服务,找到PostGreSQL运行的任务,右击“属性”可以进行查看安装的目录。 进入该目…...
CSS 缩减顶部动画
<template><!-- mouseenter"startAnimation" 表示在鼠标进入元素时触发 startAnimation 方法。mouseleave"stopAnimation" 表示在鼠标离开元素时触发 stopAnimation 方法。 --><!-- 容器元素 --><div class"container" mou…...
开源掌机是什么?
缘起 最近在学习小游戏的开发,偶然发现有一种叫“掌机”的游戏机,可以玩远古的各类游戏机、街机游戏!并且价格都还很便宜。这种神器的东西到底是什么?是如何工作的呢?有市场前景吗?带着这些疑问࿰…...
基于Wenet长音频分割降噪识别
Wenet是一个流行的语音处理工具,它专注于长音频的处理,具备分割、降噪和识别功能。它的长音频分割降噪识别功能允许对长时间录制的音频进行分段处理,首先对音频进行分割,将其分解成更小的段落或语音片段。接着进行降噪处理&#x…...
mysql基础-表操作
环境: 管理工具:Navicat 数据库版本:5.7.37 mysql的版本,我们可以通过函数,version()进行查看,本次使用的版本如下: 目录 1.管理工具 1.1创建表 1.2.修改表名 1.3.复制表 1.4.删除表 2…...
MySql——1146 - Table‘mysql.proc‘doesn‘t exit是这个
项目场景: 做自己的小项目需要连接mysql数据库 问题描述 点击数据库时报错 1146 - Table’mysql.proc’doesn’t exit 原因分析: 误删原生的mysql数据库 解决方案: 重新安装装部署mysql就好了 注意不要轻易删除原生的东西...
玩转贝启科技BQ3588C开源鸿蒙系统开发板 —— 代码下载(1)
本文主要参考: BQ3588C_代码下载 1. 安装依赖工具 安装命令如下: sudo apt-get update && sudo apt-get install binutils git git-lfs gnupg flexbison gperf build-essential zip curl zlib1g-dev gcc-multilib g-multiliblibc6-dev-i386 l…...
开源预约挂号平台 - 从0到上线
文章目录 开源预约挂号平台 - 从0到上线演示地址源码地址可以学到的技术前端技术后端技术部署上线开发工具其他技术业务功能 项目讲解前端创建项目 - 安装PNPM - 使用VSCODE - 安装插件首页顶部与底部 - 封装组建 - 使用scss左右布局中间内容部分路由 - vue-routerBANNER- 走马…...
Vue3的proxy
vue3.0中,使用proxy替换了原来遍历对象使用Object.defineProperty方法给属性添加set/get vue的核心能力之一是监听用户定义的状态变化并响应式刷新DOM vue2是通过替换状态对象属性的getter和setter来实现的,vue3则通过proxy进行 改为proxy后,可以突破vue当前的…...
Vue Router的介绍与引入
在这里是记录我引入Vue Router的全过程,引入方面也最好先看官方文档 一.介绍 Vue Router 是 Vue.js 的官方路由。它与 Vue.js 核心深度集成,让用 Vue.js 构建单页应用变得轻而易举。功能包括: 嵌套路由映射动态路由选择模块化、基于组件的…...
StratifiedKFold解释和代码实现
StratifiedKFold解释和代码实现 文章目录 一、StratifiedKFold是什么?二、 实验数据设置2.1 实验数据生成代码2.2 代码结果 三、实验代码3.1 实验代码3.2 实验结果3.3 结果解释3.4 数据打乱对这种交叉验证的影响。 四、总结 一、StratifiedKFold是什么? …...
四十八----react实战
一、项目中css模块化管理 1、css-loader 以下可以使用styles.xxx方式使用class是因为使用css-loader配置了module。 import styles from ./index.less export const App(){return <div className={styles.xxx}>hello word</div> }//webpack配置 {test:/\.css$/,u…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
