当前位置: 首页 > news >正文

【flink番外篇】9、Flink Table API 支持的操作示例(14)- 时态表的join(java版本)

Flink 系列文章

一、Flink 专栏

Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。

  • 1、Flink 部署系列
    本部分介绍Flink的部署、配置相关基础内容。

  • 2、Flink基础系列
    本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。

  • 3、Flik Table API和SQL基础系列
    本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。

  • 4、Flik Table API和SQL提高与应用系列
    本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。

  • 5、Flink 监控系列
    本部分和实际的运维、监控工作相关。

二、Flink 示例专栏

Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。

两专栏的所有文章入口点击:Flink 系列文章汇总索引


文章目录

  • Flink 系列文章
  • 一、maven依赖
  • 二、时态表的join
    • 1、统计需求对应的SQL
    • 2、Without connnector 实现代码
    • 3、With connnector 实现代码


本文通过两个示例介绍了时态表TemporalTableFunction的join操作。

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文除了maven依赖外,没有其他依赖。

本文更详细的内容可参考文章:

17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)

本专题分为以下几篇文章:
【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表
【flink番外篇】9、Flink Table API 支持的操作示例(2)- 通过Table API 和 SQL 创建视图
【flink番外篇】9、Flink Table API 支持的操作示例(3)- 通过API查询表和使用窗口函数的查询
【flink番外篇】9、Flink Table API 支持的操作示例(4)- Table API 对表的查询、过滤操作
【flink番外篇】9、Flink Table API 支持的操作示例(5)- 表的列操作
【flink番外篇】9、Flink Table API 支持的操作示例(6)- 表的聚合(group by、Distinct、GroupBy/Over Window Aggregation)操作
【flink番外篇】9、Flink Table API 支持的操作示例(7)- 表的join操作(内联接、外联接以及联接自定义函数等)
【flink番外篇】9、Flink Table API 支持的操作示例(8)- 时态表的join(scala版本)
【flink番外篇】9、Flink Table API 支持的操作示例(9)- 表的union、unionall、intersect、intersectall、minus、minusall和in的操作
【flink番外篇】9、Flink Table API 支持的操作示例(10)- 表的OrderBy、Offset 和 Fetch、insert操作
【flink番外篇】9、Flink Table API 支持的操作示例(11)- Group Windows(tumbling、sliding和session)操作
【flink番外篇】9、Flink Table API 支持的操作示例(12)- Over Windows(有界和无界的over window)操作
【flink番外篇】9、Flink Table API 支持的操作示例(13)- Row-based(map、flatmap、aggregate、group window aggregate等)操作
【flink番外篇】9、Flink Table API 支持的操作示例(14)- 时态表的join(java版本)
【flink番外篇】9、Flink Table API 支持的操作示例(1)-完整版
【flink番外篇】9、Flink Table API 支持的操作示例(2)-完整版

一、maven依赖

本文maven依赖参考文章:【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表 中的依赖,为节省篇幅不再赘述。

二、时态表的join

假设有一张订单表Orders和一张汇率表Rates,那么订单来自于不同的地区,所以支付的币种各不一样,那么假设需要统计每个订单在下单时候Yen币种对应的金额。
在这里插入图片描述

1、统计需求对应的SQL

SELECT o.currency, o.amount, r.rateo.amount * r.rate AS yen_amount
FROMOrders AS o,LATERAL TABLE (Rates(o.rowtime)) AS r
WHERE r.currency = o.currency

2、Without connnector 实现代码

就是使用静态数据实现,其验证结果在代码中的注释部分。

/** @Author: alanchan* @LastEditors: alanchan* @Description: */import static org.apache.flink.table.api.Expressions.$;import java.time.Duration;
import java.util.Arrays;
import java.util.List;import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;public class TestTemporalTableFunctionDemo {// 维表@Data@NoArgsConstructor@AllArgsConstructorpublic static class Rate {private String currency;private Integer rate;private Long rate_time;}// 事实表@Data@NoArgsConstructor@AllArgsConstructorpublic static class Order {private Long total;private String currency;private Long order_time;}final static List<Rate> rateList = Arrays.asList(new Rate("US Dollar", 102, 1L),new Rate("Euro", 114, 1L),new Rate("Yen", 1, 1L),new Rate("Euro", 116, 5L),new Rate("Euro", 119, 7L));final static List<Order> orderList = Arrays.asList(new Order(2L, "Euro", 2L),new Order(1L, "US Dollar", 3L),new Order(50L, "Yen", 4L),new Order(3L, "Euro", 5L));public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);// order 实时流 事实表DataStream<Order> orderDs = env.fromCollection(orderList).assignTimestampsAndWatermarks(WatermarkStrategy.<Order>forBoundedOutOfOrderness(Duration.ofSeconds(10)).withTimestampAssigner((order, rTimeStamp) -> order.getOrder_time()));// rate 实时流 维度表DataStream<Rate> rateDs = env.fromCollection(rateList).assignTimestampsAndWatermarks(WatermarkStrategy.<Rate>forBoundedOutOfOrderness(Duration.ofSeconds(10)).withTimestampAssigner((rate, rTimeStamp) -> rate.getRate_time()));// 转变为TableTable orderTable = tenv.fromDataStream(orderDs, $("total"), $("currency"), $("order_time").rowtime());Table rateTable = tenv.fromDataStream(rateDs, $("currency"), $("rate"), $("rate_time").rowtime());tenv.createTemporaryView("alan_orderTable", orderTable);tenv.createTemporaryView("alan_rateTable", rateTable);// 定义一个TemporalTableFunctionTemporalTableFunction rateDim = rateTable.createTemporalTableFunction($("rate_time"), $("currency"));// 注册表函数// tenv.registerFunction("alan_rateDim", rateDim);tenv.createTemporarySystemFunction("alan_rateDim", rateDim);String sql = "select o.*,r.rate from alan_orderTable as o,Lateral table (alan_rateDim(o.order_time)) r where r.currency = o.currency ";// 关联查询Table result = tenv.sqlQuery(sql);// 打印输出DataStream resultDs = tenv.toAppendStream(result, Row.class);resultDs.print();// rate 流数据(维度表)// rateList// order 流数据// orderList// 控制台输出// 2> +I[2, Euro, 1970-01-01T00:00:00.002, 114]// 5> +I[50, Yen, 1970-01-01T00:00:00.004, 1]// 16> +I[1, US Dollar, 1970-01-01T00:00:00.003, 102]// 2> +I[3, Euro, 1970-01-01T00:00:00.005, 116]env.execute();}}

3、With connnector 实现代码

本处使用的是kafka作为数据源来实现。其验证结果在代码中的注释部分。

/** @Author: alanchan* @LastEditors: alanchan* @Description: */
package org.tablesql.join;import static org.apache.flink.table.api.Expressions.$;import java.time.Duration;
import java.util.Properties;import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;
import org.tablesql.join.bean.CityInfo;
import org.tablesql.join.bean.CityInfoSchema;
import org.tablesql.join.bean.UserInfo;
import org.tablesql.join.bean.UserInfoSchema;public class TestJoinDimByKafkaEventTimeDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);// Kafka的ip和要消费的topic,//Kafka设置Properties props = new Properties();props.setProperty("bootstrap.servers", "192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092");props.setProperty("group.id", "group.cyb.2");// 读取用户信息KafkaFlinkKafkaConsumer<UserInfo> userConsumer = new FlinkKafkaConsumer<UserInfo>("user", new UserInfoSchema(),props);userConsumer.setStartFromEarliest();userConsumer.assignTimestampsAndWatermarks(WatermarkStrategy.<UserInfo>forBoundedOutOfOrderness(Duration.ofSeconds(0)).withTimestampAssigner((user, rTimeStamp) -> user.getTs()) // 该句如果不加,则是默认为kafka的事件时间);// 读取城市维度信息KafkaFlinkKafkaConsumer<CityInfo> cityConsumer = new FlinkKafkaConsumer<CityInfo>("city", new CityInfoSchema(), props);cityConsumer.setStartFromEarliest();cityConsumer.assignTimestampsAndWatermarks(WatermarkStrategy.<CityInfo>forBoundedOutOfOrderness(Duration.ofSeconds(0)).withTimestampAssigner((city, rTimeStamp) -> city.getTs()) // 该句如果不加,则是默认为kafka的事件时间);Table userTable = tableEnv.fromDataStream(env.addSource(userConsumer), $("userName"), $("cityId"), $("ts").rowtime());Table cityTable = tableEnv.fromDataStream(env.addSource(cityConsumer), $("cityId"), $("cityName"),$("ts").rowtime());tableEnv.createTemporaryView("userTable", userTable);tableEnv.createTemporaryView("cityTable", cityTable);// 定义一个TemporalTableFunctionTemporalTableFunction dimCity = cityTable.createTemporalTableFunction($("ts"), $("cityId"));// 注册表函数// tableEnv.registerFunction("dimCity", dimCity);tableEnv.createTemporarySystemFunction("dimCity", dimCity);Table u = tableEnv.sqlQuery("select * from userTable");// u.printSchema();tableEnv.toAppendStream(u, Row.class).print("user流接收到:");Table c = tableEnv.sqlQuery("select * from cityTable");// c.printSchema();tableEnv.toAppendStream(c, Row.class).print("city流接收到:");// 关联查询Table result = tableEnv.sqlQuery("select u.userName,u.cityId,d.cityName,u.ts " +"from userTable as u " +", Lateral table  (dimCity(u.ts)) d " +"where u.cityId=d.cityId");// 打印输出DataStream resultDs = tableEnv.toAppendStream(result, Row.class);resultDs.print("\t关联输出:");// 用户信息格式:// {"userName":"user1","cityId":1,"ts":0}// {"userName":"user1","cityId":1,"ts":1}// {"userName":"user1","cityId":1,"ts":4}// {"userName":"user1","cityId":1,"ts":5}// {"userName":"user1","cityId":1,"ts":7}// {"userName":"user1","cityId":1,"ts":9}// {"userName":"user1","cityId":1,"ts":11}// kafka-console-producer.sh --broker-list server1:9092 --topic user// 城市维度格式:// {"cityId":1,"cityName":"nanjing","ts":15}// {"cityId":1,"cityName":"beijing","ts":1}// {"cityId":1,"cityName":"shanghai","ts":5}// {"cityId":1,"cityName":"shanghai","ts":7}// {"cityId":1,"cityName":"wuhan","ts":10}// kafka-console-producer.sh --broker-list server1:9092 --topic city// 输出// city流接收到::6> +I[1, beijing, 1970-01-01T00:00:00.001]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.004]// city流接收到::6> +I[1, shanghai, 1970-01-01T00:00:00.005]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.005]// city流接收到::6> +I[1, shanghai, 1970-01-01T00:00:00.007]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.007]// city流接收到::6> +I[1, wuhan, 1970-01-01T00:00:00.010]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.009]// user流接收到::6> +I[user1, 1, 1970-01-01T00:00:00.011]//         关联输出::12> +I[user1, 1, beijing, 1970-01-01T00:00:00.001]//         关联输出::12> +I[user1, 1, beijing, 1970-01-01T00:00:00.004]//         关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.005]//         关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.007]//         关联输出::12> +I[user1, 1, shanghai, 1970-01-01T00:00:00.009]env.execute("joinDemo");}}

以上,本文通过两个示例介绍了时态表TemporalTableFunction的join操作。

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文更详细的内容可参考文章:

17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)

本专题分为以下几篇文章:
【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表
【flink番外篇】9、Flink Table API 支持的操作示例(2)- 通过Table API 和 SQL 创建视图
【flink番外篇】9、Flink Table API 支持的操作示例(3)- 通过API查询表和使用窗口函数的查询
【flink番外篇】9、Flink Table API 支持的操作示例(4)- Table API 对表的查询、过滤操作
【flink番外篇】9、Flink Table API 支持的操作示例(5)- 表的列操作
【flink番外篇】9、Flink Table API 支持的操作示例(6)- 表的聚合(group by、Distinct、GroupBy/Over Window Aggregation)操作
【flink番外篇】9、Flink Table API 支持的操作示例(7)- 表的join操作(内联接、外联接以及联接自定义函数等)
【flink番外篇】9、Flink Table API 支持的操作示例(8)- 时态表的join(scala版本)
【flink番外篇】9、Flink Table API 支持的操作示例(9)- 表的union、unionall、intersect、intersectall、minus、minusall和in的操作
【flink番外篇】9、Flink Table API 支持的操作示例(10)- 表的OrderBy、Offset 和 Fetch、insert操作
【flink番外篇】9、Flink Table API 支持的操作示例(11)- Group Windows(tumbling、sliding和session)操作
【flink番外篇】9、Flink Table API 支持的操作示例(12)- Over Windows(有界和无界的over window)操作
【flink番外篇】9、Flink Table API 支持的操作示例(13)- Row-based(map、flatmap、aggregate、group window aggregate等)操作
【flink番外篇】9、Flink Table API 支持的操作示例(14)- 时态表的join(java版本)
【flink番外篇】9、Flink Table API 支持的操作示例(1)-完整版
【flink番外篇】9、Flink Table API 支持的操作示例(2)-完整版

相关文章:

【flink番外篇】9、Flink Table API 支持的操作示例(14)- 时态表的join(java版本)

Flink 系列文章 一、Flink 专栏 Flink 专栏系统介绍某一知识点&#xff0c;并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分&#xff0c;比如术语、架构、编程模型、编程指南、基本的…...

【leetcode100-30】【链表】两两交换链表节点

【题干】 给你一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题&#xff08;即&#xff0c;只能进行节点交换&#xff09;。 【思路】 先说递归的&#xff0c;退出条件很明显&#xff0c;当剩…...

小秋SLAM入门实战ubuntu所有文章汇总

Ubuntu系统安装详细教程 Ubuntu系统安装ROS详细教程 Ubuntu系统下如何搭建深度学习和SLAM开发环境 Ubuntu系统搭建SLAM开发环境 ubuntu 终端如何停止快速打印的输出以及恢复命令 ubuntu 终端如何快速打开当前路径下的图形化窗口界面&#xff1f; killall -9用途用法 ps -xu | …...

深度学习课程实验二深层神经网络搭建及优化

一、 实验目的 1、学会训练和搭建深层神经网络&#xff1b; 2、掌握超参数调试正则化及优化。 二、 实验步骤 初始化 1、导入所需要的库 2、搭建神经网络模型 3、零初始化 4、随机初始化 5、He初始化 6、总结三种不同类型的初始化 正则化 1、导入所需要的库 2、使用非正则化…...

Elasticsearch:Serarch tutorial - 使用 Python 进行搜索 (二)

这个是继上一篇文章 “Elasticsearch&#xff1a;Serarch tutorial - 使用 Python 进行搜索 &#xff08;一&#xff09;” 的续篇。在今天的文章中&#xff0c;我们接着来完成如何进行分页及过滤。 分页 - pagination 应用程序处理大量结果通常是不切实际的。 因此&#xff0…...

力扣labuladong——一刷day84

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、力扣743. 网络延迟时间 前言 Dijkstra 算法&#xff08;一般音译成迪杰斯特拉算法&#xff09;无非就是一个 BFS 算法的加强版&#xff0c;它们都是从二叉…...

Linux环境vscode clang-format格式化:vscode clang format command is not available

问题现象 vscode安装了clang-format插件&#xff0c;但是使用就报错 问题原因 设置中配置的clang-format插件工具路径不正确。 解决方案 确认本地安装了clang-format工具&#xff1a;终端输入clang-format&#xff08;也可能是clang-format-13等版本&#xff0c;建议tab自…...

【KingbaseES】实现MySql函数WEEKS_BETWEEN

WEEKS_BETWEEN CREATE OR REPLACE FUNCTION weeks_between(start_date date, end_date date) RETURNS integer AS $$ BEGIN RETURN EXTRACT(WEEK FROM end_date) - EXTRACT(WEEK FROM start_date); END; $$ LANGUAGE plpgsql IMMUTABLE;结果展示...

@Scheduled定时任务现状与改进

项目场景&#xff1a; 定时任务现状&#xff1a;每个项目都会有一些配置信息&#xff0c;这些信息我们是都放在一个配置服务中&#xff0c;这个服务会定时从配置表中加载所有配置存入本地JVM内存&#xff0c;以供调用方获取&#xff08;调用方集成了配置服务的SDK&#xff0c;…...

python+selenium爬虫笔记

本文只是做例子&#xff0c;具体网站路径麻烦你们换下&#xff0c;还有xpath路径也换下 一、安装所需要的组件&#xff08;此处采用谷歌&#xff09; 1、安装驱动 查看你的浏览器版本&#xff0c;去安装对应的版本 下载驱动 下载驱动路径 之前版本的 输入这个路径下载下来解压…...

【LMM 009】MiniGPT-4:使用 Vicuna 增强视觉语言理解能力的多模态大模型

论文描述&#xff1a;MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models 论文作者&#xff1a;Deyao Zhu∗ Jun Chen∗ Xiaoqian Shen Xiang Li Mohamed Elhoseiny 作者单位&#xff1a;King Abdullah University of Science and Techn…...

SpringBoot学习(三)-整合JDBC、Druid、MyBatis

注&#xff1a;此为笔者学习狂神说SpringBoot的笔记&#xff0c;其中包含个人的笔记和理解&#xff0c;仅做学习笔记之用&#xff0c;更多详细资讯请出门左拐B站&#xff1a;狂神说!!! 一、整合JDBC使用&#xff08;理解&#xff09; 创建项目 勾选依赖启动器 查看依赖 …...

如何选择合适的语音呼叫中心?

市场上不同的语音呼叫中心提供商&#xff0c;都有其独特的优势和不足。企业在选择语音呼叫中心服务公司时&#xff0c;主要考虑以下因素&#xff1a;服务质量、价格、技术支持、客户支持等。 首先&#xff0c;服务质量是选择语音呼叫中心需关注的最重要因素之一。 为确保语音…...

使用qtquick调用python程序

一. 内容简介 使用qtquick调用python程序 二. 软件环境 2.1vsCode 2.2Anaconda version: conda 22.9.0 2.3pytorch 安装pytorch(http://t.csdnimg.cn/GVP23) 2.4QT 5.14.1 新版QT6.4,&#xff0c;6.5在线安装经常失败&#xff0c;而5.9版本又无法编译64位程序&#xf…...

【Axure高保真原型】树形表格_多选效果

今天和大家分享树形表格_多选效果的原型模板&#xff0c;点击树的箭头可以展开或者收起子节点&#xff0c;点击多选按钮可以选中或取消选择该行以及子级行内容&#xff0c;同时反选父级行内容&#xff0c;父级行内容能根据子级选中的数量自动反选&#xff0c;包括全选、半选和未…...

【Filament】加载obj和fbx模型

1 前言 3D 模型的常用格式主要有 obj、fbx、gltf 等&#xff0c;Filament 中的 filamesh.exe 工具可以将 obj、fbx 格式转换为 filamesh 格式&#xff0c;然后再加载显示。对于 gltf 格式模型&#xff0c;可以通过 ModelViewer 加载显示&#xff0c;这不在本文的讨论范围内。 1…...

[USACO04OPEN] The Cow Lineup

题目描述 约翰的 N &#xff08; 1 ≤ N ≤ 100000 &#xff09; N &#xff08; 1 \leq N \leq 100000 &#xff09; N&#xff08;1≤N≤100000&#xff09; 只奶牛站成了一列。每只奶牛都写有一个号牌&#xff0c;表示她的品种&#xff0c;号牌上的号码在 1 … K &#x…...

软件工具集合

代码文档自动生成工具&#xff1a; Doxygen download 软件分析工具&#xff1a; perf gdb flamegraph 代码量统计&#xff1a; vscode插件&#xff1a;VS Code Counter 代码备注 vsocde插件&#xff1a; Line Note...

C#利用openvino部署PP-TinyPose人体姿态识别

【官方框架地址】 github.com/PaddlePaddle/PaddleDetection 【算法介绍】 关键点检测算法往往需要部署在轻量化、边缘端设备上&#xff0c;因此长期以来都存在一个难题&#xff1a;精度高、速度则慢、算法体积也随之增加。而PP-TinyPose的出世彻底打破了这个僵局&#xff0c…...

MindSpore Serving与TGI框架 の 对比

一、MindSpore Serving MindSpore Serving是一款轻量级、高性能的服务工具&#xff0c;帮助用户在生产环境中高效部署在线推理服务。 使用MindSpore完成模型训练>导出MindSpore模型&#xff0c;即可使用MindSpore Serving创建该模型的推理服务。 MindSpore Serving包含以…...

两阶段提交协议三阶段提交协议

两阶段提交协议 分布式事务是指会涉及到操作多个数据库的事务,在分布式系统中&#xff0c;各个节点之间在物理上相互独立&#xff0c;通过网络进行沟通和协调。 XA 就是 X/Open DTP 定义的交易中间件与数据库之间的接口规范&#xff08;即接口函数&#xff09;&#xff0c;交易…...

6-Docker Compose-tomcat application(指定官方镜像)

1.创建docker-compose.yml文件,添加如下内容并保存 vim docker-compose.yml [root@centos79 ~]# cat docker-compose.yml #yml文件 version: 3 #版本号,默认为3 services:tomcat-ztj: #定…...

宝塔安装的imagemagick不能用,必须自己手动安装

1 安装 用composer安装 2 宝塔安装的imagemagick不能用&#xff0c;必须自己手动安装&#xff08;3.4.3版本 php 7.3&#xff09; 1 步骤&#xff1a; wget https://pecl.php.net/get/imagick-3.4.3.tgz tar -zxf imagick-3.4.3.tgz cd imagick-3.4.3 /www/server/php/73…...

解决在test以外的目录下导入junit无效

以上引用来自src目录下的文件&#xff0c;可以看到&#xff0c;和junit有关的导入都飘红&#xff0c;但明明junit已经被正确导入进了项目中。 再看右侧的Maven的依赖下方&#xff0c;junit的右边有一个很不起眼的(test) 这是因为junit作为测试框架&#xff0c;可能包含仅适用于…...

docker 在线安装mysql 8.0.21版本

1、拉取mysql 8.0.21版本镜像 2、查看镜像 docker images 3、在宿主机 /usr/local/mysql 下的 conf 文件夹下&#xff0c;创建 my.cnf 文件&#xff0c;并编辑内容 [mysql] default-character-setutf8 [client] port3306 default-character-setutf8 [mysqld] port3306 se…...

WPF DatePicker与Calendar的使用和样式修改

什么是DatePicker&#xff0c;Calendar Calendar&#xff1a;日历&#xff08;显示年月日视图控件&#xff09;DatePicker&#xff1a;日期选择器&#xff08;是一个更小的控件&#xff0c;点击控件时才会弹出一个日历&#xff09; Calendar使用 常用属性 DisplayMode&#…...

从0开始python学习-40.通过正则表达式/json进行接口关联

目录 1. 正则表达式&#xff1a;使用re库&#xff08;需安装-pip install re&#xff09;&#xff0c;只能提取字符串的数据。 1.1 re.seach&#xff1a;提取一个值&#xff0c;得到的是一个对象&#xff0c;通过下标group(1)取值&#xff0c;如果没有匹配到值则返回None 1.…...

【React系列】高阶组件

本文来自#React系列教程&#xff1a;https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. 高阶组件 1.1. 认识高阶组件 什么是高阶组件呢&#xff1f;相信很多同学都听说过&#xff0c;也用过 高阶函数&…...

听GPT 讲Rust源代码--src/tools(38)

File: rust/src/tools/clippy/clippy_dev/src/lib.rs rust/src/tools/clippy/clippy_dev/src/lib.rs文件是Clippy开发工具的入口文件&#xff0c;其作用是提供Clippy开发过程中所需的功能和工具。Clippy是一个Rust代码的静态分析工具&#xff0c;用于提供各种有用的代码规范、编…...

.NET C# 如何获取object对象的数据

如何获取object对象的数据 在DAL层&#xff0c;一般会封装一些返回值&#xff0c;返回的类型就会为object &#xff0c;但是需要其中的值进行判断 public static object SaveFileIns(string filepath){return new { path pathlist, file_name fileNamelist, Message "…...

上海企业网站设计制作/销售网站排名

hash赋能前言一、缺失的第一个正数二、hash赋能1、hashSet2、原地数组hash总结参考文献前言 hash赋能可以为后面的工作大大减少搜索的时间&#xff0c;可用hash数组、hashSet、hashMap、原地数组hash。 一、缺失的第一个正数 二、hash赋能 1、hashSet //hash赋能//Time:O(n…...

哈尔滨做平台网站平台公司/网站搜索排名靠前

Java压缩解压缩文件的方法有&#xff0c;第一中借助java jdk自带的ZipOutputStream和ZipInputStream。 第二种&#xff0c;借助第三方jar&#xff0c; 例如Apache Commons Compress和Ant。 下面以Ant为例详细介绍。 前提&#xff0c;需要将Ant的ant.jar和ant-launcher.jar添加…...

网站建设初学者必学/seo 优化公司

目录 分析静态页面静态vs动态本次项目页面分析模板抽取base目录下的base.htmlnewsnews下主页index.htmlnews下的new_detail.htmlnews下search.htmldocdoc下docDownload.htmlusersusers下的login.htmlusers下的registercoursecourse下的course.htmlcourse下的course_detail.html…...

义乌网站建设公司哪家好/搭建网站的软件

signal信号的处理过程 mips架构下signal信号的处理。信号是linux下非常重要的部分&#xff0c;把这几天看的整理一下。 执行kill -l列出所有的信号 HUP INT QUIT ILL TRAP ABRT BUS FPE KILL USR1 SEGV USR2 PIPE ALRM TERM STKFLT CHLD CONT STOP TSTP TTIN TTOU URG XCPU…...

做恋爱方面的网站/seo搜索优化待遇

中国矿业大学教职工代表大会第一次会议暨工会会员中国矿业大学第八届教职工代表大会暨第十四届工会会员代表大会第一次会议代表团代表名单(以姓氏笔画为序)(共18个代表团593名代表&#xff0c;其中&#xff1a;正式代表368人、特邀代表 30人、列席代表 195 人)矿业工程学院、安…...

搜集10个优秀网站/网上卖产品怎么推广

一. 前言 当一款游戏发展到一定阶段,必不可少的要接入推送SDK,推送功能,分为以下两种: 本地推送:玩家打开游戏后,给手机系统通知设置推送的倒计时,等游戏关闭后,倒计时结束时,手机会自动打开通知给用户。由于是提前设定死的内容和计时器,所以灵活性差。 远程通知:有…...