debug mccl 02 —— 环境搭建及初步调试
1, 搭建nccl 调试环境
下载 nccl 源代码
git clone --recursive https://github.com/NVIDIA/nccl.git
只debug host代码,故将设备代码的编译标志改成 -O3
(base) hipper@hipper-G21:~/let_debug_nccl/nccl$ git diff
diff --git a/makefiles/common.mk b/makefiles/common.mk
index a037cf3..ee2aa8e 100644
--- a/makefiles/common.mk
+++ b/makefiles/common.mk
@@ -82,7 +82,8 @@ ifeq ($(DEBUG), 0)NVCUFLAGS += -O3CXXFLAGS += -O3 -gelse
-NVCUFLAGS += -O0 -G -g
+#NVCUFLAGS += -O0 -G -g
+NVCUFLAGS += -O3CXXFLAGS += -O0 -g -ggdb3endif
修改后变成如下:
nccl$ vim makefiles/common.mk
ifeq ($(DEBUG), 0)
NVCUFLAGS += -O3
CXXFLAGS += -O3 -g
else
#NVCUFLAGS += -O0 -G -g
NVCUFLAGS += -O3
CXXFLAGS += -O0 -g -ggdb3
endif
构建 nccl shared library:
机器上是几张sm_85 的卡,故:
$ cd nccl
$ make -j src.build DEBUG=1 NVCC_GENCODE="-gencode=arch=compute_80,code=sm_80"
到此即可,不需要安装nccl,直接过来使用即可;
2, 创建调试APP
在nccl所在的目录中创建app文件夹:
$ mkdir app$ cd app$ vim sp_md_nccl.cpp$ vim Makefile
sp_md_nccl.cpp:
#include <stdlib.h>
#include <stdio.h>
#include "cuda_runtime.h"
#include "nccl.h"
#include <time.h>
#include <sys/time.h>#define CUDACHECK(cmd) do { \cudaError_t err = cmd; \if (err != cudaSuccess) { \printf("Failed: Cuda error %s:%d '%s'\n", \__FILE__,__LINE__,cudaGetErrorString(err)); \exit(EXIT_FAILURE); \} \
} while(0)#define NCCLCHECK(cmd) do { \ncclResult_t res = cmd; \if (res != ncclSuccess) { \printf("Failed, NCCL error %s:%d '%s'\n", \__FILE__,__LINE__,ncclGetErrorString(res)); \exit(EXIT_FAILURE); \} \
} while(0)void get_seed(long long &seed)
{struct timeval tv;gettimeofday(&tv, NULL);seed = (long long)tv.tv_sec * 1000*1000 + tv.tv_usec;//only second and usecond;printf("useconds:%lld\n", seed);
}void init_vector(float* A, int n)
{long long seed = 0;get_seed(seed);srand(seed);for(int i=0; i<n; i++){A[i] = (rand()%100)/100.0f;}
}void print_vector(float* A, float size)
{for(int i=0; i<size; i++)printf("%.2f ", A[i]);printf("\n");
}void vector_add_vector(float* sum, float* A, int n)
{for(int i=0; i<n; i++){sum[i] += A[i];}
}int main(int argc, char* argv[])
{ncclComm_t comms[4];printf("ncclComm_t is a pointer type, sizeof(ncclComm_t)=%lu\n", sizeof(ncclComm_t));//managing 4 devices//int nDev = 4;int nDev = 2;//int size = 32*1024*1024;int size = 16*16;int devs[4] = { 0, 1, 2, 3 };float** sendbuff_host = (float**)malloc(nDev * sizeof(float*));float** recvbuff_host = (float**)malloc(nDev * sizeof(float*));for(int dev=0; dev<nDev; dev++){sendbuff_host[dev] = (float*)malloc(size*sizeof(float));recvbuff_host[dev] = (float*)malloc(size*sizeof(float));init_vector(sendbuff_host[dev], size);init_vector(recvbuff_host[dev], size);}//sigma(sendbuff_host[i]); i = 0, 1, ..., nDev-1float* result = (float*)malloc(size*sizeof(float));memset(result, 0, size*sizeof(float));for(int dev=0; dev<nDev; dev++){vector_add_vector(result, sendbuff_host[dev], size);printf("sendbuff_host[%d]=\n", dev);print_vector(sendbuff_host[dev], size);}printf("result=\n");print_vector(result, size);//allocating and initializing device buffersfloat** sendbuff = (float**)malloc(nDev * sizeof(float*));float** recvbuff = (float**)malloc(nDev * sizeof(float*));cudaStream_t* s = (cudaStream_t*)malloc(sizeof(cudaStream_t)*nDev);for (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaMalloc(sendbuff + i, size * sizeof(float)));CUDACHECK(cudaMalloc(recvbuff + i, size * sizeof(float)));CUDACHECK(cudaMemcpy(sendbuff[i], sendbuff_host[i], size*sizeof(float), cudaMemcpyHostToDevice));CUDACHECK(cudaMemcpy(recvbuff[i], recvbuff_host[i], size*sizeof(float), cudaMemcpyHostToDevice));CUDACHECK(cudaStreamCreate(s+i));}//initializing NCCLNCCLCHECK(ncclCommInitAll(comms, nDev, devs));//calling NCCL communication API. Group API is required when using//multiple devices per threadNCCLCHECK(ncclGroupStart());printf("blocked ncclAllReduce will be calleded\n");fflush(stdout);for (int i = 0; i < nDev; ++i)NCCLCHECK(ncclAllReduce((const void*)sendbuff[i], (void*)recvbuff[i], size, ncclFloat, ncclSum, comms[i], s[i]));printf("blocked ncclAllReduce is calleded nDev =%d\n", nDev);fflush(stdout);NCCLCHECK(ncclGroupEnd());//synchronizing on CUDA streams to wait for completion of NCCL operationfor (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaStreamSynchronize(s[i]));}for (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaMemcpy(recvbuff_host[i], recvbuff[i], size*sizeof(float), cudaMemcpyDeviceToHost));}for (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaStreamSynchronize(s[i]));}for(int i=0; i<nDev; i++) {printf("recvbuff_dev2host[%d]=\n", i);print_vector(recvbuff_host[i], size);}//free device buffersfor (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaFree(sendbuff[i]));CUDACHECK(cudaFree(recvbuff[i]));}//finalizing NCCLfor(int i = 0; i < nDev; ++i)ncclCommDestroy(comms[i]);printf("Success \n");return 0;
}
Makefile:
INC := -I /usr/local/cuda/include -I ../nccl/build/include
LD_FLAGS := -L ../nccl/build/lib -lnccl -L /usr/local/cuda/lib64 -lcudartEXE := singleProc_multiDev_ncclall: $(EXE)%: %.cppg++ -g -ggdb3 $< -o $@ $(INC) $(LD_FLAGS).PHONY: clean
clean: -rm -rf $(EXE)
export LD_LIBRARY_PATH=../nccl/build/lib
3, 开始调试
$ cuda-gdb sp_md_nccl(cuda-gdb) start (cuda-gdb) rbreak doLauches(cuda-gdb) c(cuda-gdb) p ncclGroupCommHead->tasks.collQueue.head->op
初步实现了可debug的效果:
现在想要搞清楚在程序调用 ncclAllReduce(..., ncclSum, ... ) 后,是如何映射到 cudaLaunchKernel调用到了正确的 cuda kernel 函数的。
在doLaunches函数中,作如下debug动作:
查看 doLaunches(ncclComm*) 的函数参数,即,gropu.cc中的变量:ncclGroupCommHead的某个成员的成员的值:op
其结果如下:
(cuda-gdb) p ncclGroupCommHead
$5 = (ncclComm *) 0x5555563231e0
(cuda-gdb) p ncclGroupCommHead->tasks.collQueue.head->op
$6 = {op = ncclDevSum, proxyOp = ncclSum, scalarArgIsPtr = false, scalarArg = 256}
(cuda-gdb)
不过这依然只停留在了 ncclSum的这个枚举类型上,还没锁定对应的cudaKernel。
接下来继续努力 ...
相关文章:

debug mccl 02 —— 环境搭建及初步调试
1, 搭建nccl 调试环境 下载 nccl 源代码 git clone --recursive https://github.com/NVIDIA/nccl.git 只debug host代码,故将设备代码的编译标志改成 -O3 (base) hipperhipper-G21:~/let_debug_nccl/nccl$ git diff diff --git a/makefiles/common.mk b/makefiles/…...
ros python 接收GPS RTK 串口消息再转发 ros 主题消息
代码是一个ROS(Robot Operating System)节点,用于从GPS设备读取RTK(实时动态)数据并通过ROS主题发布。 步骤: 导入必要的模块: rospy 是ROS的Python库,用于ROS的节点、发布者和订阅者。serial 用于串行通信。NavSatFix 和 NavSatStatus 是从GPS接收的NMEA 0183标准消息…...
2024年网络安全竞赛-页面信息发现任务解析
页面信息发现任务说明: 服务器场景:win20230305(关闭链接)在渗透机中对服务器信息收集,将获取到的服务器网站端口作为Flag值提交;访问服务器网站页面,找到主页面中的Flag值信息,将Flag值提交;访问服务器网站页面,找到主页面中的脚本信息,并将Flag值提交;访问服务器…...
ARM DMA使用整理
Direct Memory Access, 直接存储访问。同SPI,IIC,USART等一样,属于MCU的一个外设,用于在不需要MCU介入的情况下进行数据传输。可以将数据从外设传输到flash,也可以将数据从flash传输到外设,或者flash内部数据移动。 它…...

移动通信原理与关键技术学习(第四代蜂窝移动通信系统)
前言:LTE 标准于2008 年底完成了第一个版本3GPP Release 8的制定工作。另一方面,ITU 于2007 年召开了世界无线电会议WRC07,开始了B3G 频谱的分配,并于2008 年完成了IMT-2000(即3G)系统的演进——IMT-Advanc…...

光明源@智慧厕所技术:优化生活,提升卫生舒适度
在当今数字科技飞速发展的时代,我们的日常生活正在经历一场革命,而这场革命的其中一个前沿领域就是智慧厕所技术。这项技术不仅仅是对传统卫生间的一次升级,更是对我们生活品质的全方位提升。从智能感应到数据分析,从环保设计到舒…...

【Bootstrap学习 day13】
Bootstrap5 下拉菜单 下拉菜单通常用于导航标题内,在用户鼠标悬停或单击触发元素时显示相关链接列表。 基础的下拉列表 <div class"dropdown"><button type"button" class"btn btn-primary dropdown-toggle" data-bs-toggl…...
Shell:常用命令之dirname与basename
一、介绍 1、dirname命令用于去除文件名中的非目录部分,删除最后一个“\”后面的路径,显示父目录。 语法:dirname [选项] 参数 2、basename命令用于打印目录或者文件的基本名称,显示最后的目录名或文件名。 语法:basen…...

Linux-v4l2框架
框架图 从上图不难看出,v4l2_device作为顶层管理者,一方面通过嵌入到一个video_device中,暴露video设备节点给用户空间进行控制;另一方面,video_device内部会创建一个media_entity作为在media controller中的抽象体&a…...
VPC网络架构下的网络上数据采集
介绍 想象这样一个场景,一开始在公司里,所有的部门的物理机、POD都在一个经典网络内,它们可以通过 IP 访问彼此,没有任何限制。因此有很多系统基于此设计了很多点对点 IP 直连的访问,比如中心控制服务器 S 会主动访问物…...

模拟算法(模拟算法 == 依葫芦画瓢)万字
模拟算法 基本思想引入算法题替换所有的问号提莫攻击Z字形变换外观数列数青蛙 基本思想 模拟算法 依葫芦画瓢解题思维要么通俗易懂,要么就是找规律,主要难度在于将思路转换为代码。 特点:相对于其他算法思维,思路比较简单&#x…...

QtApplets-SystemInfo
QtApplets-SystemInfo 今天是2024年1月3日09:18:44,这也是2024年的第一篇博客,今天我们主要两件事,第一件,获取系统CPU使用率,第二件,获取系统内存使用情况。 这里因为写博客的这个本本的环境配置不…...
vue3防抖函数封装与使用,以指令的形式使用
utils/debounce.js /*** 防抖函数* param {*} fn 函数* param {*} delay 暂停时间* returns */ export function debounce(fn, delay 500) {let timer nullreturn function (...args) {// console.log(arguments);// const args Array.from(arguments)if (timer) {clearTim…...

Hive学习(13)lag和lead函数取偏移量
hive里面lag函数 在数据处理和分析中,窗口函数是一种重要的技术,用于在数据集中执行聚合和分析操作。Hive作为一种大数据处理框架,也提供了窗口函数的支持。在Hive中,Lag函数是一种常用的窗口函数,可以用于计算前一行…...
Centos Unable to verify the graphical display setup
ERROR: Unable to verify the graphical display setup. 在Linux下安装Oracle时 运行 ./runInstaller 报错 ERROR: Unable to verify the graphical display setup. This application requires X display. Make sure that xdpyinfo exist under PATH variable. No X11 DISPL…...
Java 说一下 synchronized 底层实现原理?
Java 说一下 synchronized 底层实现原理? synchronized 是 Java 中用于实现同步的关键字,它保证了多个线程对共享资源的互斥访问。底层实现涉及到对象头的 Mark Word 和锁升级过程。 synchronized 可以用于方法上或代码块上,分别对应于方法…...

nginx访问路径匹配方法
目录 一:匹配方法 二:location使用: 三:rewrite使用 一:匹配方法 location和rewrite是两个用于处理请求的重要模块,它们都可以根据请求的路径进行匹配和处理。 二:location使用: 1:简单匹配…...
偌依 项目部署及上线步骤
准备实验环境,准备3台机器 1.作为前端服务器,mysql,redis服务器--同时临时作为代码打包服务器 192.168.2.65 nginx-server 2.作为后端服务器 192.168.2.66 java-server-1 192.168.2.67 java-server-2 安装nginx/mysql #安装nginx [rootweb-nginx ~]…...
PHP特性知识点扫盲 - 上篇
概述 之前在分析thinkphp源码的时候,对依赖注入等等php高级的特性一直想做一个梳理和总结,一直没有时间,好不容易抽一点时间对技术的盲点做一个扫盲和总结。 特性 1.命名空间 命名空间是在PHP5.3中引入,是一个很重要的工具&am…...

Docker一键极速安装Nacos,并配置数据库!
1 部署方式 1.1 DockerHub javaedgeJavaEdgedeMac-mini ~ % docker run --name nacos \ -e MODEstandalone \ -e JVM_XMS128m \ -e JVM_XMX128m \ -e JVM_XMN64m \ -e JVM_MS64m \ -e JVM_MMS64m \ -p 8848:8848 \ -d nacos/nacos-server:v2.2.3 a624c64a1a25ad2d15908a67316d…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...