《动手学深度学习》学习笔记 第5章 深度学习计算
本系列为《动手学深度学习》学习笔记
书籍链接:动手学深度学习
笔记是从第四章开始,前面三章为基础知道,有需要的可以自己去看看
关于本系列笔记: 书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺
5. 深度学习计算
5.1 层和块
图5.1.1: 多个层被组合成块,形成更大的模型
下面的代码生成一个网络:具有256个单元和ReLU激活函数的全连接隐藏层,然后是一个具有10个隐藏单元且不带激活函数的全连接 输出层。
import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)
简而言 之,nn.Sequential定义了一种特殊的Module,即在PyTorch中表示一个块的类,它维护了一个由Module组成 的有序列表。
这个前 向传播函数非常简单:它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。
5.1.1 自定义块
从零开始编写一个块:它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一 个10维输出层。
class MLP(nn.Module):# 用模型参数声明层。这里,我们声明两个全连接的层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)super().__init__()self.hidden = nn.Linear(20, 256) # 隐藏层self.out = nn.Linear(256, 10) # 输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))
- 首先, 我们定制的__init__函数通过super().init()调用父类的__init__函数(省去了重复编写模版代码的痛苦。)
- 然后,我们实例化两个全连接层,分别为self.hidden和self.out。
- 注意,除非我们实现一个新的运算符, 否则我们不必担心反向传播函数或参数初始化,系统将自动生成这些。
5.1.2 顺序块
看看Sequential类是如何工作的?
为了构建我们自己的简化的MySequential,我们只需要定义两个关键函数:
- 将块逐个追加到列表中的函数;
- 前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。
class MySequential(nn.Module):def __init__(self, *args):super().__init__()for idx, module in enumerate(args):# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员# 变量_modules中。_module的类型是OrderedDictself._modules[str(idx)] = moduledef forward(self, X):# OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modules.values():X = block(X)return X
- __init__函数将每个模块逐个添加到有序字典_modules中。
为什么每个Module都有一 个_modules属性?
为什么我们使用它而不是自己定义一个Python列表?
.
简而言之,_modules的主要优点是:在模块的参数初始化过程中,系统知道在_modules字典中查找需要初始化参数的子块。
5.1.3 在前向传播函数中执行代码
有时我们可能希望合并 既不是上一层的结果也不是可更新参数的项,我们称之为常数参数(constant parameter)。
例如,我们需要一个计算函数 f ( x , w ) = c ⋅ w ⊤ x f(x, w) = c · w^{⊤}x f(x,w)=c⋅w⊤x的层,其中x是输入, w w w是参数, c c c是某个在优化过程中没有更新的指定常量。因此我们实现了一个FixedHiddenMLP类,如下所示:
class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight = torch.rand((20, 20), requires_grad=False)self.linear = nn.Linear(20, 20)def forward(self, X):X = self.linear(X)# 使用创建的常量参数以及relu和mm函数X = F.relu(torch.mm(X, self.rand_weight) + 1)# 复用全连接层。这相当于两个全连接层共享参数X = self.linear(X)# 控制流while X.abs().sum() > 1:X /= 2return X.sum()
其中权重(self.rand_weight)在实例化时被随机初始化,之后为常量。这个权重不是一个模型参数,因此它不会被反向传播更新。
5.2 参数管理
在选择了架构并设置了超参数后,我们就进入了训练阶段。
- 此时,我们的目标是找到使损失函数最小化的模型参数值。经过训练后,我们将需要使用这些参数来做出未来的预测。
- 此外,有时我们希望提取参数,以便在其他环境中复用它们,将模型保存下来,以便它可以在其他软件中执行,或者为了获得科学的理解而进行检查。
本节,我们将介绍以下内容:
- 访问参数,用于调试、诊断和可视化;
- 参数初始化;
- 在不同模型组件间共享参数。
5.2.1 参数访问
从已有模型中访问参数。当通过Sequential类定义模型时,可以通过索引来访问模型的任意层。
如下所示,我们可以检查第二个全连接层的参数。
print(net[2].state_dict())OrderedDict([('weight', tensor([[-0.0427, -0.2939, -0.1894, 0.0220, -0.1709, -0.1522, -0.0334, -0.,2263]])), ('bias', tensor([0.0887]))])
输出的结果:
- 首先,这个全连接层包含两个参数,分别是该层的权重和偏置。
- 两者都存储为单精度浮点数(float32)。
注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。
目标参数
访问底层的数值:从第二个全连接层(即第三个神经网络层)提取偏置,提取后返回的是一个参数类实例,并进一步访问该参数的值。
print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
参数是复合的对象,包含值、梯度和额外信息。 除了值之外,我们还可以访问每个参数的梯度。(在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。)
一次性访问所有参数
当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。当我们处理更复杂的块(例如,嵌套块)
时,情况可能会变得特别复杂,因为我们需要递归整个树来提取每个子块的参数。下面,我们将通过演示来
比较访问第一个全连接层的参数和访问所有层。
print(*[(name, param.shape) for name, param in net[0].named_parameters()])
# ('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))print(*[(name, param.shape) for name, param in net.named_parameters()])
#('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8]))
#('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))
这为我们提供了另一种访问网络参数的方式,如下所示。
net.state_dict()['2.bias'].data
# tensor([0.0887])
从嵌套块收集参数
如果将多个块相互嵌套,参数命名约定是如何工作的?
def block1():return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),nn.Linear(8, 4), nn.ReLU())def block2():net = nn.Sequential()for i in range(4):# 在这里嵌套net.add_module(f'block {i}', block1())return netrgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
print(rgnet)
Sequential(
(0): Sequential((block 0): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 1): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 2): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 3): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU()))
(1): Linear(in_features=4, out_features=1, bias=True))
rgnet[0][1][0].bias.data
# tensor([ 0.1999, -0.4073, -0.1200, -0.2033, -0.1573, 0.3546, -0.2141, -0.2483])
5.2.2 参数初始化
默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵,这个范围是根据输入和输出维度计算
出的。
PyTorch的nn.init模块提供了多种预置初始化方法:
内置初始化
- 例1:将所有权重参数初始化为标准差为0.01的高斯随机变量,且将偏置参数设置为0。
def init_normal(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, mean=0, std=0.01)nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
- 例2:将所有参数初始化为给定的常数,比如初始化为1。
def init_constant(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 1)nn.init.zeros_(m.bias)net.apply(init_constant)net[0].weight.data[0], net[0].bias.data[0]
- 例3:使用Xavier初始化方法初始化第一个神经网络层,然后将第三个神经网络层初始化为常量值42。
def init_xavier(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 42)net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
5.2.3 参数绑定
有时希望在多个层间共享参数:我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。
# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),shared, nn.ReLU(),shared, nn.ReLU(),nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
这个例子表明第三个和第五个神经网络层的参数是绑定的(实际上是同一个对象)。它们不仅值相等,而且由相同的张量表示。因此,如果我们改变其中一个参数,另一个参数也会改变。
当参数绑定时,梯度会发生什么情况?
答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层(即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。
5.3 延后初始化
到目前为止,我们忽略了建立网络时需要做的以下这些事情:
- 定义了网络架构,但没有指定输入维度。
- 添加层时没有指定前一层的输出维度。
- 在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。
深度学习框架无法判断网络的输入维度是什么。这里的诀窍是框架的延后初始化(defers initialization),即直到数据第一次通过模型传递时,框架才会动态地推断出每个层的大小。
5.3.1 实例化网络
首先,实例化一个多层感知机。
此时,因为输入维数是未知的,所以网络不可能知道输入层权重的维数。因此,框架尚未初始化任何参数。
接下来让将数据通过网络,最终使框架初始化参数。
一旦知道输入维数是20,框架可以通过代入值20来识别第一层权重矩阵的形状。识别出第一层的形状后,框架处理第二层,依此类推,直到所有形状都已知为止。
注意,在这种情况下,只有第一层需要延迟初始化,但是框架仍是按顺序初始化的。等到知道了所有的参数形状,框架就可以初始化参数。
5.4 自定义层
深度学习成功背后的一个因素是神经网络的灵活性:可以用创造性的方式组合不同的层,从而设计出适用于各种任务的架构。
5.4.1 不带参数的层
首先,构造一个没有任何参数的自定义层。
下面的CenteredLayer类要从其输入中减去均值。要构建它,我们只需继承基础层类并实现前向传播功能。
import torch
import torch.nn.functional as F
from torch import nnclass CenteredLayer(nn.Module):def __init__(self):super().__init__()def forward(self, X):return X - X.mean()
验证:
layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))
# tensor([-2., -1., 0., 1., 2.])
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
Y = net(torch.rand(4, 8))
Y.mean()
# tensor(7.4506e-09, grad_fn=<MeanBackward0>)
5.4.2 带参数的层
实现自定义版本的全连接层。该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。
在此实现中,使用修正线性单元作为激活函数。该层需要输入参数:in_units和units,分别表示输入数和输出数。
class MyLinear(nn.Module):def __init__(self, in_units, units):super().__init__()self.weight = nn.Parameter(torch.randn(in_units, units))self.bias = nn.Parameter(torch.randn(units,))def forward(self, X):linear = torch.matmul(X, self.weight.data) + self.bias.datareturn F.relu(linear)
实例化MyLinear类并访问其模型参数。
linear = MyLinear(5, 3)
linear.weight
#Parameter containing:
#tensor([[ 0.1775, -1.4539, 0.3972],#[-0.1339, 0.5273, 1.3041],#[-0.3327, -0.2337, -0.6334],#[ 1.2076, -0.3937, 0.6851],#[-0.4716, 0.0894, -0.9195]], requires_grad=True)
5.5 读写文件
5.5.1 加载和保存张量
import torch
from torch import nn
from torch.nn import functional as Fx = torch.arange(4)
torch.save(x, 'x-file') # 保存x2 = torch.load('x-file') # 读取
以写入或读取从字符串映射到张量的字典。
mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2
5.5.2 加载和保存模型参数
class MLP(nn.Module):def __init__(self):super().__init__()self.hidden = nn.Linear(20, 256)self.output = nn.Linear(256, 10)def forward(self, x):return self.output(F.relu(self.hidden(x)))net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)
将模型的参数存储在一个叫做“mlp.params”的文件中。
torch.save(net.state_dict(), 'mlp.params')
为了恢复模型,我们实例化了原始多层感知机模型的一个备份。
这里我们不需要随机初始化模型参数,而是直接读取文件中存储的参数。
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()
5.6 GPU
使用nvidia-smi命令查看显卡信息。
!nvidia-smi
5.6.1 计算设备
指定用于存储和计算的设备,如CPU和GPU。默认情况下,张量是在内存中创建的,然后使用CPU计算它。
应该注意的是:
- cpu设备意味着所有物理CPU和内存,这意味着PyTorch的计算将尝试使用所有CPU核心。
- 然而,gpu设备只代表一个卡和相应的显存。
- 如果有多个GPU,我们使用torch.device(f’cuda:{i}') 来表示第i块GPU(i从0开始)。
- 另外,cuda:0和cuda是等价的。
import torch
from torch import nn
torch.device('cpu')
torch.device('cuda')
torch.device('cuda:1')
查询可用gpu的数量。
torch.cuda.device_count()
在不存在所需所有GPU的情况下运行代码。
def try_gpu(i=0): #@save"""如果存在,则返回gpu(i),否则返回cpu()"""if torch.cuda.device_count() >= i + 1:return torch.device(f'cuda:{i}')return torch.device('cpu')def try_all_gpus(): #@save"""返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""devices = [torch.device(f'cuda:{i}')for i in range(torch.cuda.device_count())]return devices if devices else [torch.device('cpu')]
try_gpu()try_gpu(10)try_all_gpus()
5.6.2 张量与GPU
查询张量所在的设备。(默认情况下,张量是在CPU上创建的。)
x = torch.tensor([1, 2, 3])
x.device
# device(type='cpu')
- 需要注意的是,无论何时我们要对多个项进行操作,它们都必须在同一个设备上。
例如,如果我们对两个张量求和,我们需要确保两个张量都位于同一个设备上,否则框架将不知道在哪里存储结果,甚至不知道在哪里执行计算。
存储在GPU上
有几种方法可以在GPU上存储张量。例如,我们可以在创建张量时指定存储设备。
在第一个gpu上创建张量变量X。(在GPU上创建的张量只消耗这个GPU的显存。我们可以使用nvidia-smi命令查看显存使用情况。一般来说,需要确保不创建超过GPU显存限制的数据。)
X = torch.ones(2, 3, device=try_gpu())
X
# tensor([[1., 1., 1.],[1., 1., 1.]], device='cuda:0')
假设至少有两个GPU,下面的代码将在第二个GPU上创建一个随机张量。
Y = torch.rand(2, 3, device=try_gpu(1))
Y
# tensor([[0.4860, 0.1285, 0.0440],[0.9743, 0.4159, 0.9979]], device='cuda:1')
复制
如果我们要计算X + Y,我们需要决定在哪里执行这个操作。例如,如下图所示,不要简单地X加上Y,这会导致异常,运行时引擎不知道该怎么做:它在同一设备上找不到数据会导致失败。
由于Y位于第二个GPU上,所以我们需要将X移到那里,然后才能执行相加运算。
Z = X.cuda(1)
print(X)
print(Z)# tensor([[1., 1., 1.],[1., 1., 1.]], device='cuda:0')
# tensor([[1., 1., 1.],[1., 1., 1.]], device='cuda:1')
相关文章:
《动手学深度学习》学习笔记 第5章 深度学习计算
本系列为《动手学深度学习》学习笔记 书籍链接:动手学深度学习 笔记是从第四章开始,前面三章为基础知道,有需要的可以自己去看看 关于本系列笔记: 书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很…...
【Redis】非关系型数据库之Redis的介绍及安装配置
目录 前言 一、关系型数据库与非关系型数据库 1.1关系型数据库 1.2非关系型数据库 1.3两者的区别 1.4非关系型数据库产生的背景 1.5总结 二、Redis介绍 2.1Redis是什么 2.2Redis的优点 2.3Redis的使用场景 2.4那些数据适合放在缓存中 2.5Redis为什么那么快…...
3D模型轻量化
在线工具推荐:3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 近来,基于3D模型在影视作品、数字旅游项目诸多3D视觉领域都取得…...
数据分析——快递电商
一、任务目标 1、任务 总体目的——对账 本项目解决同时使用多个快递发货,部分隔离区域出现不同程度涨价等情形下,如何快速准确核对账单的问题。 1、在订单表中新增一列【运费差异核对】来表示订单运费实际有多少差异,结果为数值。 2、将…...
《PCI Express体系结构导读》随记 —— 第I篇 第2章 PCI总线的桥与配置(8)
接前一篇文章:《PCI Express体系结构导读》随记 —— 第I篇 第2章 PCI总线的桥与配置(7) 2.2 HOST主桥 MPC8548处理器的拓扑结构如图2-2所示: 2.2.2 存储器域地址空间到PCI总线域地址空间的转换 MPC8548处理器使用ATMUÿ…...
Hadoop分布式文件系统(二)
目录 一、Hadoop 1、文件系统 1.1、文件系统定义 1.2、传统常见的文件系统 1.3、文件系统中的重要概念 1.4、海量数据存储遇到的问题 1.5、分布式存储系统的核心属性及功能含义 2、HDFS 2.1、HDFS简介 2.2、HDFS设计目标 2.3、HDFS应用场景 2.4、HDFS重要特性 2.4…...
macOS跨进程通信: FIFO(有名管道) 创建实例
一: 简介 在类linux系统中管道分为有名管道和匿名管道。两者都能单方向的跨进程通信。 匿名管道(pipe): 必须是父子进程之间,而且子进程只能由父进程fork() 出来的,才能继承父进程的管道句柄,一般mac 开发…...
推荐几个免费的HTTP接口Mock网站和工具
在前后端分离开发架构下,经常遇到调用后端数据API接口进行测试、集成、联调等需求,比如: (1)前端开发人员很快开发完成了UI界面,但后端开发人员的API接口还没有完成,不能进行前后端数据接口对接…...
企业数据库安全管理规范
1.目的 为规范数据库系统安全使用活动,降低因使用不当而带来的安全风险,保障数据库系统及相关应用系统的安全,特制定本数据库安全管理规范。 2.适用范围 本规范中所定义的数据管理内容,特指存放在信息系统数据库中的数据。 本…...
react:ffcreator中FFCreatorCenter视频队例
最近项目要求,一键生成房子的推荐视频,选几张图,加上联系人的方式就是一个简单的视频,因为有web端、小程序端,为了多端口用,决定放在服务器端生成。 目前用的是react中的nextjs来开发项目。 nextjs中怎样…...
力扣(leetcode)第434题字符串中的单词数(Python)
434.字符串中的单词数 题目链接:434.字符串中的单词数 统计字符串中的单词个数,这里的单词指的是连续的不是空格的字符。 请注意,你可以假定字符串里不包括任何不可打印的字符。 示例: 输入: “Hello, my name is John” 输出: 5 解释: 这…...
django学习:页面渲染与请求和响应
1.请求过程 2.页面渲染 在app中新建一个目录(Directory),文件名命名为templates。该文件名命名是固定的,不可命名出错,如若后续步骤出错,该目录文件名是一个检查的重点项目。在该目录下新建一个html文件&a…...
Redis 数据一致性
概述 当我们在使用缓存时,如果发生数据变更,那么你需要同时操作缓存和数据库,而它们两个又分属不同的系统,因此无法做到同时操作成功或失败,因此在并发读写下很可能出现缓存与数据库数据不一致的情况 理论上可以通过…...
Mac环境下反编译apk
Mac环境下反编译apk 安装反编译工具dex2jar:[官网下载](https://sourceforge.net/projects/dex2jar/)JD-GUI:[官网下载](https://jd-gui.apponic.com/) 实操1. 将需要反编译的 .apk 文件放在下载的 dex2jar 文件夹目录下2. 使用 cd /xxx/dex2jar-2.0 命令…...
计算机网络——网络模型的组织、看法以及标准化流程
1. 通信技术和标准化领域中扮演重要角色的组织 1.1 国际和国家官方标准化机构 OSI:国际标准化组织(ISO),负责国际标准的制定,旨在确保全球产品和服务的安全性、可靠性和效率。它有许多国家分支机构,包括法…...
【JAVA】volatile 关键字的作用
🍎个人博客:个人主页 🏆个人专栏: JAVA ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 volatile 的作用: 结语 我的其他博客 前言 在多线程编程中,保障数据的一致性和线程之间的可见性是…...
Next.js 第一次接触
因为需要整个漂亮的在线文档,所以接触了next.js,因为对前端js本身不够熟悉,别说对react.js 又不会,时间又不允许深入研究,所以,为了加一个导航菜单,极其痛苦。 有点小bug,不过不影响…...
CISSP 第7章:PKI和密码学应用
第七章 PKI和密码学应用 7.1 非对称密码学 对称密码系统具有共享的秘钥系统,从而产生了安全秘钥分发的问题 非对称密码学使用公钥和私钥对,无需支出复杂密码分发系统 7.1.1 公钥与私钥 7.1.2 RSA(兼具加密和数字签名) RSA算法依赖…...
dji uav建图导航系列()ROS中创建dji_sdk节点包(二)实现代码
在前文 【dji uav建图导航系列()ROS中创建dji_sdk节点包(一)项目结构】中简单介绍了项目的结构,和一些配置文件的代码。本文详细说明目录src下的节点源代码实现。 文章目录 1、代码结构2、PSDK部分3、ROS部分3.1、头文件3.1.1、外部调用 node_service.h3.1.2、节点类定义…...
数字化工厂产品推荐 带OPC UA的分布式IO模块
背景 近年来,为了提升在全球范围内的竞争力,制造企业希望自己工厂的机器之间协同性更强,自动化设备采集到的数据能够发挥更大的价值,越来越多的传统型工业制造企业开始加入数字化工厂建设的行列,实现智能制造。 数字化…...
使用OHOS SDK构建opus
参照OHOS IDE和SDK的安装方法配置好开发环境。 从github下载源码。 执行如下命令: git clone --depth1 https://github.com/xiph/opus进入源码所在的目录,创建批处理文件ohos_build.cmd,内容如下: echo off setlocalset OHOS_…...
K-means 聚类算法分析
算法简述 K-means 算法原理 我们假定给定数据样本 X ,包含了 n 个对象 ,其中每一个对象都具有 m 个维度的属性。而 K-means 算法的目标就是将 n 个对象依据对象间的相似性聚集到指定的 k 个类簇中,每个对象属于且仅属于一个其到类簇中心距离…...
uniapp获取定位
Uniapp 是一种跨平台应用开发框架,它能够快速地构建出针对不同平台的应用程序。在Uniapp中,实现定位功能也变得十分简单,只需要简单的配置就能轻松实现。 一、高德地图根据指定位置获取经纬度 参考地址:地理/逆地理编码-基础 API…...
Python 面向对象之反射
Python 面向对象之反射 【一】概念 反射是指通过对象的属性名或者方法名来获取对象的属性或调用方法的能力反射还指的是在程序额运行过程中可以动态获取对象的信息(属性和方法) 【二】四个内置函数 又叫做反射函数 万物皆对象(整数、字符串、函数、模块、类等等…...
HPM6750开发笔记《DMA接收和发送数据UART例程深度解析》
目录 概述: 端口设置: 代码分析: 运行现象: 概述: DMA(Direct Memory Access)是一种计算机系统中的数据传输技术,它允许数据在不经过中央处理器(CPU)的直…...
SQL IN 操作符
IN 操作符 IN 操作符允许您在 WHERE 子句中规定多个值。 SQL IN 语法 SELECT column1, column2, ... FROM table_name WHERE column IN (value1, value2, ...); 参数说明: column1, column2, ...:要选择的字段名称,可以为多个字段。如果…...
如何使用Plex在Windows系统搭建个人媒体站点公网可访问
文章目录 1.前言2. Plex网站搭建2.1 Plex下载和安装2.2 Plex网页测试2.3 cpolar的安装和注册 3. 本地网页发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1.前言 用手机或者平板电脑看视频,已经算是生活中稀松平常的场景了,特别是各…...
web前端——clear可以清除浮动产生的影响
clear可以解决高度塌陷的问题,产生的副作用要小 未使用clear之前 <!DOCTYPE html> <head><meta charset"UTF-8"><title>高度塌陷相关学习</title><style>div{font-size:50px;}.box1{width:200px;height:200px;backg…...
centos用yum安装mysql详细教程
1 查询安装mysql的yum源,命令如下 ls /etc/yum.repos.d/ -l 界面如下图所示,未显示mysql的安装源 2 安装mysql相关的yum源,例如: 例如:rpm -ivh mysql57-community-release-el7.rpm 要注意 mysql的版本和系统的版本匹配 mysql57-communi…...
冲刺2024年AMC8竞赛的专题突破:匹克定律和不规则形状面积的求法
先温馨提示:2024年AMC8比赛报名今天是最后一天,如果还想参加比赛的孩子今天务必完成报名,错过今天再等一年。需要AMC8自由报名通道可以问我。 到昨天为止,六分成长已经把过去20多年的AMC8竞赛真题都给大家过了一遍,今天为大家做一…...
wordpress按钮切换内容/windows优化大师好吗
iOS开发之iPhone通过get和post方式请求asp.net webservice 这篇文章,我将通过一个简单的例子来展现iPhone通过get和post方式请求asp.net webservice。 webservice 1、创建一个webservice 2、在webconfig中启用http get 和http post。 <webServices><protoc…...
熊掌号接合网站做seo/谷歌浏览器搜索入口
一、内联元素与行元素的区别 1、内联元素即行内元素。2、内联元素,在文档流中挤在一行;不能设置宽高(即,即使设置了也不管用,例如a标签)、margin和padding的top和bottom 块元素,独占一行&#x…...
wordpress迁移/营销型网站一般有哪些内容
在创业的路上,见证了不少创业公司成长历史,有些成功了,有些失败了。总的来说,我认为影响创业的关键因素,有如下几点: 创意商业模式团队资金时机 我曾经认为创意是创业最重要的因素。随着时间推移࿰…...
哈尔滨 网站建设仟路/故事式软文范例500字
Linux网络设备分析Linux网络设备分析[摘要] 在本文中,首先概括了网络设备总体特征和工作原理,接着在分析了一个重要的数据结构device后,重点剖析了网络设备的整个初始化工作过程;简单地分析了设备的打开和关闭的操作后,…...
wordpress 角色权限/成都网络营销公司排名
http://www.icbc.com.cn/ https://mybank.icbc.com.cn/ HTTPS的通信过程 总的可以分为3大阶段 ① TCP的3次握手 ② TLS的连接 ③ HTTP请求和响应 TLS 1.2 的连接(ECDHE密钥交换算法) wireshark 抓包 tcp port 443 控制端口 ip.addr xxx.xxx.xxx.x…...
wordpress自带相册/营销策略从哪几个方面分析
目录 前言 一、词向量基础 1.单词的表示 2.从独热编码到分布式表示 3.词向量的训练 二、SkipGram模型详解 1.训练词向量的核心思想 2.SkipGram的目标函数 3.SkipGram的负采样 三、其他词向量技术 1.矩阵分解法 2.Glove向量 总结 前言 上一章已经介绍完自然语言处…...