当前位置: 首页 > news >正文

【Java集合类篇】HashMap的数据结构是怎样的?

在这里插入图片描述

HashMap的数据结构是怎样的?

  • ✔️HashMap的数据结构
    • ✔️ 数组
    • ✔️ 链表


✔️HashMap的数据结构


在Java中,保存数据有两种比较简单的数据结构: 数组和链表(或红黑树)。


HashMapJava 中常用的数据结构,它实现了 Map 接口。HashMap通过键值对的形式存储数据,其中键是唯一的,而值可以是任何对象。HashMap底层使用数组和链表(或红黑树)来实现。


常用的哈希函数的冲突解决办法中有一种方法叫做链地址法,其实就是将数组和链表组合在一起,发挥了两者的优势,我们可以将其理解为链表的数组。在JDK 1.8之前,HashMap就是通过这种结构来存储数据的。


在这里插入图片描述


我们可以从上图看到,左边很明显是个数组,数组的每个成员是一个链表。该数据结构所容纳的所有元素均包含一个指针,用于元素间的链接。我们根据元素的自身特征把元素分配到不同的链表中去,反过来我们也正是通过这些特征找到正确的链表,再从链表中找出正确的元素。其中,根据元素特征计算元素数组下标的方法就是哈希算法,即本文的主角 hash() 函数 (当然,还包括indexOf()函数)。


✔️ 数组


数组:HashMap使用一个数组来存储键值对。数组的每个元素都是一个桶(bucket),桶中存储着一个链表(LinkedList)或红黑树(TreeMap)。桶的数量可以根据需要动态调整。数组的索引方式采用哈希算法,通过将键的哈希值对数组长度取模来得到对应的桶。


数组的特点是:寻址容易,插入和删除困难。


看一个如何使用数组实现HashMap的代码片段:


public class MyHashMap<K, V> { // 默认初始容量  private static final int DEFAULT_INITIAL_CAPACITY = 16;  // 默认加载因子  private static final float DEFAULT_LOAD_FACTOR = 0.75f;  // 存储键值对的数组 private Entry<K, V>[] table;  // 当前容量 private int capacity; // 实际存储的键值对数量   private int size;  public MyHashMap() {  this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);  }  public MyHashMap(int capacity) {  this(capacity, DEFAULT_LOAD_FACTOR);  }  public MyHashMap(int capacity, float loadFactor) {  this.capacity = capacity;  table = new Entry[capacity];  size = 0;  }  public V put(K key, V value) {  int hash = hash(key);  int index = indexFor(hash, table.length);  Entry<K, V> oldValue = table[index];  if (oldValue == null) {  table[index] = new Entry<>(key, value, null);  size++;  if (size > capacity * loadFactor) {  rehash();  }  } else {  Entry<K, V> newEntry = new Entry<>(key, value, oldValue);  table[index] = newEntry;  }  return oldValue == null ? null : oldValue.value;  }  public V get(K key) {  int hash = hash(key);  int index = indexFor(hash, table.length);  Entry<K, V> entry = table[index];  if (entry != null && Objects.equals(entry.key, key)) {  return entry.value;  } else {  return null;  }  }  public int size() {  return size;  }  private int hash(Object key) {  return Objects.hashCode(key);  }  private int indexFor(int hash, int length) {  return hash % length;  }  private void rehash() {  Entry<K, V>[] oldTable = table;  int oldCapacity = oldTable.length;  int newCapacity = oldCapacity * 2;  Entry<K, V>[] newTable = new Entry[newCapacity];  for (Entry<K, V> oldEntry : oldTable) {  while (oldEntry != null) {  Entry<K, V> next = oldEntry.next;  int hash = hash(oldEntry.key);  int index = indexFor(hash, newCapacity);  oldEntry.next = newTable[index];  newTable[index] = oldEntry;  oldEntry = next;  }  }  table = newTable;  capacity = newCapacity;  }  
}

✔️ 链表


链表:当多个键的哈希值映射到同一个桶时,它们会形成一个链表。链表中的每个节点包含一个键值对和指向下一个节点的指针。链表的作用是在插入、删除和查找操作时解决哈希冲突。


链表的特点是: 寻址困难,插入和删除容易


看一个如何使用链表实现HashMap的代码片段,是一个简单的HashMap实现,使用链表来处理哈希冲突:


public class MyHashMap<K, V> {  private static class Entry<K, V> {  K key;  V value;  Entry<K, V> next;  Entry(K key, V value, Entry<K, V> next) {  this.key = key;  this.value = value;  this.next = next;  }  }  private Entry<K, V>[] table;  private int capacity;  private int size;  private float loadFactor;  public MyHashMap(int capacity, float loadFactor) {  if (capacity < 0) throw new IllegalArgumentException("Capacity must be non-negative");  if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Load factor must be positive");  this.capacity = capacity;  this.loadFactor = loadFactor;  table = new Entry[capacity];  size = 0;  }  public V put(K key, V value) {  if (key == null) return null; // HashMaps don't allow null keys  // If size exceeds load factor * capacity, rehash  if (size >= capacity * loadFactor) {  rehash();  }  int hash = hash(key);  int index = indexFor(hash, capacity);  Entry<K, V> entry = table[index];  if (entry == null) {  // No collision, create new entry  table[index] = new Entry<>(key, value, null);  size++;  } else {  // Collision occurred, handle it using chaining  while (entry != null && !entry.key.equals(key)) {  if (entry.next == null) {  // End of chain, insert new entry  entry.next = new Entry<>(key, value, null);  size++;  break;  }  entry = entry.next;  }  // If key already exists, update value  if (entry != null && entry.key.equals(key)) {  V oldValue = entry.value;  entry.value = value;  return oldValue;  }  }  return null; // If key was new or not found  }  public V get(K key) {  if (key == null) return null; // HashMaps don't allow null keys  int hash = hash(key);  int index = indexFor(hash, capacity);  Entry<K, V> entry = table[index];  while (entry != null && !entry.key.equals(key)) {  entry = entry.next;  }  return entry == null ? null : entry.value;  }  private void rehash() {  capacity *= 2;  Entry<K, V>[] oldTable = table;  table = new Entry[capacity];  size = 0;  for (Entry<K, V> entry : oldTable) {  while (entry != null) {  Entry<K, V> next = entry.next;  int hash = hash(entry.key);  int index = indexFor(hash, capacity);  entry.next = table[index];  table[index] = entry;  size++;  entry = next;  }  }  }  private int hash(K key) {  return Math.abs(key.hashCode()) % capacity;  }  private int indexFor(int hash, int length) {  return hash % length;  }  public static void main(String[] args) {  MyHashMap<String, Integer> map = new MyHashMap<>(16, 0.75f);  map.put("one", 1);  map.put("two", 2);  map.put("three", 3);  System.out.println(map.get("one"));    // Should print 1  System.out.println(map.get("two"));    // Should print 2  System.out.println(map.get("three"));  //Should print 3

在JDK 1.8中为了解决因hash冲突导致某个链表长度过长,影响 put get 的效率,引入了红黑树。


关于红黑树,下一篇会作为单独的博文进行更新。

相关文章:

【Java集合类篇】HashMap的数据结构是怎样的?

HashMap的数据结构是怎样的? ✔️HashMap的数据结构✔️ 数组✔️ 链表 ✔️HashMap的数据结构 在Java中&#xff0c;保存数据有两种比较简单的数据结构: 数组和链表&#xff08;或红黑树&#xff09;。 HashMap是 Java 中常用的数据结构&#xff0c;它实现了 Map 接口。Has…...

Spring 应用合并之路(一):摸石头过河 | 京东云技术团队

公司在推进降本增效&#xff0c;在尝试多种手段之后&#xff0c;发现应用太多&#xff0c;每个应用都做跨机房容灾部署&#xff0c;则最少需要 4 台机器&#xff08;称为容器更合适&#xff09;。那么&#xff0c;将相近应用做一个合并&#xff0c;减少维护项目&#xff0c;提高…...

Android13配置selinux让system应用可读sys,proc,SN号

system权限应用读sys,proc目录及SN号 Android13预置的system应用&#xff0c;需要读/sys, /proc目录&#xff0c;读(SN)serial number号, 需要修改selinux配置&#xff0c;否则会报avc错&#xff0e; 其修改方法会比Android11复杂一些&#xff0e; 实现 system_app.te中添加…...

防勒索病毒攻击的关键措施

【作者】朱向东 中原银行 高级工程师 在当今数字化时代&#xff0c;勒索病毒成为了企业和个人面临的一项严峻威胁。勒索病毒攻击可以导致数据丢失、系统瘫痪以及经济损失。为了保护自己和组织的利益&#xff0c;采取一系列的防范措施是至关重要的。下面是一些关键的措施&#…...

代表团坐车 - 华为OD统一考试

OD统一考试(B卷) 分值: 100分 题解: Java / Python / C++ 题目描述 某组织举行会议,来了多个代表团同时到达,接待处只有一辆汽车可以同时接待多个代表团,为了提高车辆利用率,请帮接待员计算可以坐满车的接待方案输出方案数量。 约束: 一个团只能上一辆车,并且代表团…...

运用Jmeter进行登录测试

开始了解Jmeter,写篇关于Jmeter的博客做备忘,这里以苏宁易购网站的登录请求为例实战来说明测试计划元件,创建一个 Web 测试计划。 今天简单介绍Jemeter的入门,Jmeter 的安装这边就跳过,直接讲述如何使用JMETER,如何运用Jmeter进行测试。 a.下载jmeter软件 b.安装…...

Docker学习与应用(四)-容器数据卷

1、容器数据卷 1&#xff09;什么是容器数据卷 docker的理念回顾 将应用和环境打包成一个镜像&#xff01; 数据&#xff1f;如果数据都在容器中&#xff0c;那么我们容器删除&#xff0c;数据就会丢失&#xff01;需求&#xff1a;数据可以持久化 MySQL&#xff0c;容器删…...

CentOS 7.6下HTTP隧道代理的安全性考虑

在CentOS 7.6上配置HTTP隧道代理时&#xff0c;安全性是一个不可忽视的重要因素。以下是对HTTP隧道代理安全性的一些关键考虑因素&#xff1a; 1. 加密和数据安全 使用强加密算法&#xff1a;确保您使用的是经过广泛认可和强化的加密算法&#xff0c;如AES-256-GCM。数据完整…...

Mockito+junit5搞定单元测试

目录 一、简介1.1 单元测试的特点1.2 Mock类框架的使用场景1.3 常见的Mock框架1.3.1 Mockito1.3.2 EasyMock1.3.3 PowerMock1.3.4 Testable1.3.5 比较 二、Mockito的使用2.1 导入pom文件2.2 mock对象和spy对象2.3 初始化mock/spy对象的方式2.4 参数匹配2.5 方法插桩2.6 InjectM…...

PostgreSQL获取当天、昨天、本月、上个月、本年、去年的数据

gps_time为timestamp类型日期字段 获取当天的数据 WHERE DATE_TRUNC(day, gps_time) CURRENT_DATE --或 WHERE DATE(gps_time) CURRENT_DATE获取昨天的数据 WHERE DATE_TRUNC(day, gps_time) CURRENT_DATE - INTERVAL 1 day获取本月的数据 WHERE DATE_TRUNC(month, gps_…...

XCTF:stage1[WriteUP]

从题目中下载到图片&#xff1a; 考虑图片是png&#xff0c;隐写方式有可能是高宽修改&#xff0c;也可能是色相隐藏&#xff0c;色彩通道位隐藏等等 使用stegsolve对图片进行一下伽马、颜色转换 在图片的左上角就显示出了一个二维码 使用QR_Rresearch工具对二维码扫描 获得一…...

STM32CubeMX教程13 ADC - 单通道转换

目录 1、准备材料 2、实验目标 3、ADC概述 4、实验流程 4.0、前提知识 4.1、CubeMX相关配置 4.1.1、时钟树配置 4.1.2、外设参数配置 4.1.3、外设中断配置 4.2、生成代码 4.2.1、外设初始化调用流程 4.2.2、外设中断调用流程 4.2.3、添加其他必要代码 5、常用函数…...

矩阵的乘法

首先矩阵的乘法定义如下&#xff1a; #include <stdio.h> int main() { int i 0; int j 0; int arr[20][20] { 0 }; int str[20][20] { 0 }; int s[20][20] { 0 }; int n1 0; int n2 0; int m2 0; int z 0; int m1 0;…...

python爬取招聘网站数据

这段代码是使用Selenium自动化测试模块进行网页爬取的示例代码。它通过模拟人的行为在浏览器中操作网页来实现爬取。具体的流程如下&#xff1a; 导入所需的模块&#xff0c;包括Selenium、时间、随机、csv等模块。打开浏览器&#xff0c;创建一个Chrome浏览器实例。设置要爬取…...

灌区信息化方案(什么是现代化灌区,如何一步到位)

一、系统概述 详情&#xff1a;https://www.key-iot.com.cn/ 本灌区信息化方案以星创易联公司的各类智能设备为基础,通过其产品完成水文、雨情、土壤等多源异构数据的采集,以无线自组网的方式实现数据传输,并在后台管理中心建立信息化软件平台,对数据进行融合处理。系统实现对…...

jmeter自动录制脚本功能

问题排查&#xff1a; 建议用 google浏览器&#xff1b; 重启一下jmeter&#xff1b; 过滤规则重新检查下&#xff1b; 看下代理设置是否正常&#xff1b; 注意&#xff1a;下面的的过滤设置中 用的都是正则表达式的规则。...

十一、工具盒类(MyQQ)(Qt5 GUI系列)

目录 ​编辑 一、设计需求 二、实现代码 三、代码解析 四、总结 一、设计需求 抽屉效果是软件界面设计中的一种常用形式&#xff0c;可以以一种动态直观的方式在有限大小的界面上扩展出更多的功能。本例要求实现类似 QQ 抽屉效果。 二、实现代码 #include "dialog.…...

postgresql 查询字段 信息

SELECT base.“column_name”, col_description ( t1.oid, t2.attnum ), base.udt_name, COALESCE(character_maximum_length, numeric_precision, datetime_precision), (CASE WHEN ( SELECT t2.attnum ANY ( conkey ) FROM pg_constraint WHERE conrelid t1.oid AND contyp…...

antv/x6_2.0学习使用(四、边)

一、添加边 节点和边都有共同的基类 Cell&#xff0c;除了从 Cell 继承属性外&#xff0c;还支持以下选项。 属性名类型默认值描述sourceTerminalData-源节点或起始点targetTerminalData-目标节点或目标点verticesPoint.PointLike[]-路径点routerRouterData-路由connectorCon…...

C++ stack用法总结

std::stack 是 C 标准模板库&#xff08;STL&#xff09;中的容器适配器&#xff0c;它提供了栈&#xff08;stack&#xff09;的功能&#xff0c;基于其他序列容器实现。以下是 std::stack 的用法总结&#xff1a; 包含头文件&#xff1a; #include <stack>创建 std::…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...