决策树(Decision Trees)
决策树(Decision Trees)是一种基于树形结构进行决策的模型,广泛应用于分类和回归任务。它通过对数据集进行递归划分,构建一棵树,每个节点代表一个特征,每个分支代表一个决策规则,叶节点存储一个输出值。以下是决策树的基本原理和特点:
基本原理
- 树结构: 决策树由树结构组成,包含根节点、内部节点和叶节点。每个内部节点表示一个特征,每个叶节点表示一个输出值。
- 划分规则: 决策树的构建过程涉及选择最佳的特征进行划分,使得划分后的子集更加纯净。常见的划分指标包括信息熵、基尼系数等。
- 递归分裂: 构建决策树的过程是递归的,对每个节点重复选择最佳特征进行划分,直到满足停止条件(如达到最大深度、节点包含的样本数量小于阈值等)。
- 预测: 对于新样本,通过从根节点开始沿着树的路径进行遍历,最终到达叶节点,叶节点的输出值即为模型的预测结果。
特点
- 可解释性强: 决策树的决策过程直观易懂,能够提供清晰的解释。
- 对异常值不敏感: 决策树对于异常值和噪声的影响较小。
- 可处理混合数据类型: 决策树可以处理数值型和类别型特征。
- 不需要特征缩放: 决策树不受特征尺度的影响,不需要进行特征缩放。
适用场景
- 分类问题和回归问题。
- 需要模型可解释性的场景,如医学诊断、信用评估等。
- 数据包含混合类型的特征。
代码示例(使用Python和scikit-learn
)
以下是一个简单的使用决策树进行分类的示例:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建决策树模型
model = DecisionTreeClassifier()# 训练模型
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)print(f'Accuracy: {accuracy}')
print(f'Classification Report:\n{report}')
这个示例演示了如何使用scikit-learn
库中的决策树分类器。你可以根据需要调整模型的参数,如max_depth(最大深度)等,以优化模型性能。更多详细信息和选项可以在scikit-learn的官方文档中找到。
相关文章:
决策树(Decision Trees)
决策树(Decision Trees)是一种基于树形结构进行决策的模型,广泛应用于分类和回归任务。它通过对数据集进行递归划分,构建一棵树,每个节点代表一个特征,每个分支代表一个决策规则,叶节点存储一个…...

湖南大学-计算机网路-2023期末考试【部分原题回忆】
前言 计算机网络第一门考,而且没考好,回忆起来的原题不多。 这门学科学的最认真,复习的最久,考的最差。 教材使用这本书: 简答题(6*530分) MTU和MSS分别是什么,联系是什么&#x…...

LCD—液晶显示
本节主要介绍以下内容 显示器简介 液晶控制原理 秉火3.2寸液晶屏简介 使用FSMC模拟8080时序 NOR FLASH时序结构体 FSMC初始化结构体 一、显示器简介 显示器属于计算机的I/O设备,即输入输出设备。它是一种将特定电子信息输出到屏幕上再反射到人眼的显示工具。…...
论正确初始化深度学习模型参数的重要性
遇到的问题:在一般的深度学习训练过程中,我们建立好模型以后,程序就有自动的初始化一些模型的参数,比如全连接层中每一个节点的权重等等,在之前的网络训练过程中,我总是事先设下随机种子以后,让…...

ALSA学习(5)——ASoC架构中的Machine
参考博客:https://blog.csdn.net/DroidPhone/article/details/7231605 (以下内容皆为原博客转载) 文章目录 一、注册Platform Device二、注册Platform Driver三、初始化入口soc_probe() 一、注册Platform Device ASoC把声卡注册为Platform …...
LeetCode 0447.回旋镖的数量:哈希表
【LetMeFly】447.回旋镖的数量:哈希表 力扣题目链接:https://leetcode.cn/problems/number-of-boomerangs/ 给定平面上 n 对 互不相同 的点 points ,其中 points[i] [xi, yi] 。回旋镖 是由点 (i, j, k) 表示的元组 ,其中 i 和…...
容器相关笔记
目录 1.容器 1.什么是容器 2.java中的容器 3.容器里存放的是引用数据类型(存对象的地址,不是对象本身),不能存基本数据类型 4.容器存放的两种格式 5.容器类所在的包 6.容器的分类 1.Collection,存放单一的类型 1.List&…...

cissp 第10章 : 物理安全要求
10.1 站点与设施设计的安全原则 物理控制是安全防护的第一条防线,而人员是最后一道防线。 10.1.1 安全设施计划 安全设施计划描述了组织的安全要求的轮廓, 并且着重强调为了提供安全性所用的方法和机制。 这样的计划通过被称为关键路径分析的过程进行开…...

聊一聊 .NET高级调试 内核模式堆泄露
一:背景 1. 讲故事 前几天有位朋友找到我,说他的机器内存在不断的上涨,但在任务管理器中查不出是哪个进程吃的内存,特别奇怪,截图如下: 在我的分析旅程中都是用户态模式的内存泄漏,像上图中的…...

海外代理IP在游戏中有什么作用?
随着科技的飞速发展,手机和电脑等电子产品已成为互联网连接万物的重要工具,深度融入我们的日常生活,我们借助互联网完成工作、休闲和购物等任务,以求提升生活质量。 不仅如此,网络游戏也是人们心中最爱,它…...

高防ip适合防御网站和游戏类的攻击吗?
作为站长,要学会并承受得住网站外来攻击的压力,尤其是所属为 DDoS 攻击高发行业的网站类业务及游戏行业,是很容易被竞争对手或者一些伪黑客爱好者盯上的。 加上,有些站长并没有提前了解,就盲目进军了这两个行业&…...

HTML5和JS实现明媚月色效果
HTML5和JS实现明媚月色效果 先给出效果图: 源码如下: <!DOCTYPE html> <html> <head><title>明媚月光效果</title><style>body {margin: 0;overflow: hidden;background-color: #000; /* 添加一个深色背景以便看到…...
Django5+DRF序列化
概述 本教程将介绍如何创建一个简单的粘贴板代码高亮 Web API。在此过程中,它将介绍构成 REST 框架的各种组件,让你全面了解所有组件是如何组合在一起的。 本教程相当深入,因此在开始学习之前,你可能需要先吃一块饼干࿰…...
什么是编译程序和解释程序
一、编译程序 1、编译器接收源代码作为输入,它会一次性地将整个源代码程序转换成目标代码(通常是机器语言或汇编语言),这个过程包括词法分析、语法分析、语义分析、优化以及最终的目标代码生成。2、编译后的目标代码是一个独立的…...

文档审阅批注的合并和对比
#创作灵感# 最近在改论文,Feedback返回的时候,把之前的批注都删了,这就增加了工作量,看起来不方便,所以就需要将删掉的批注全部复原。 那在原来的文档重新在修改一遍,工作量还是很大的,所以这里…...

广义零样本学习综述的笔记
1 Title A Review of Generalized Zero-Shot Learning Methods(Farhad Pourpanah; Moloud Abdar; Yuxuan Luo; Xinlei Zhou; Ran Wang; Chee Peng Lim)【IEEE Transactions on Pattern Analysis and Machine Intelligence 2022】 2 conclusion Generali…...

java每日一题——输出9x9乘法表(答案及编程思路)
前言: 打好基础,daydayup! 题目:输出下图9x9乘法表 编程思路:java只能输出行,不能输出列,所以考虑好每一行输出的内容即可 public class demo {public static void main(String[] args) {for (int i 1; i…...
Android 车联网——基础简介(一)
传统的车载功能单一,无太多娱乐性,而随着智能化时代的发展,车载系统也被赋予了在系统中预装 Android 应用的能力,基于Android平台的车载信息娱乐系统 —— Android AutoMotive 应运而生。 一、AutoMotive简介 Android Automotive OS 车载操作系统,是一个基本 Android 平台…...
自动驾驶货车编队行驶系统功能规范
货车编队行驶功能规范 Truck Platooning Functional Specification 目录 1 概述... 7 1.1 目的... 7 1.2 范围... 7 1.3 术语及缩写... 7 1.4 参考法规标准... 8 2 功能规范... 9 2.1 功能描述... 9 2.1.1 功能用途…...

javafx
JavaFX JavaFX简介 JavaFX是一个用于创建富客户端应用程序的图形用户界面(GUI)框架。它是Java平台的一部分,从Java 8开始成为Java的标准库。 JavaFX提供了丰富的图形和多媒体功能,使开发人员能够创建具有吸引力和交互性的应用程…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...