当前位置: 首页 > news >正文

机器学习 -决策树的案例

场景

我们对决策树的基本概念和算法其实已经有过了解,那我们如何利用决策树解决问题呢?

构建决策树

数据准备

我们准备了一些数据如下:

# 定义新的数据集
new_dataSet = [['晴朗', '是', '高', '是'],['雨天', '否', '低', '否'],['阴天', '是', '中', '是'],['晴朗', '否', '高', '是'],['晴朗', '是', '低', '否'],['雨天', '是', '高', '否'],['阴天', '否', '中', '是'],['晴朗', '否', '低', '否']
]

这些数据分别是天气,是否闷热,风速和是否出门郊游。
现在要解决的问题是“基于当前的天气和其他条件,我们是否应该进行户外活动?

构建决策树

我们先检查这个数据集类别是否相同:

 classList = [example[-1] for example in dataSet]if classList.count(classList[0]) == len(classList):return classList[0]

很显然,数据集类别不同,那么我们需要检查是否还有特征可分:如果说,只有类别特征的话,我们选择多数:

 if len(dataSet[0]) == 1:return majorityCnt(classList)

def majorityCnt(classList):classCount = {}  # 创建一个空字典,用于存储每个元素及其出现次数# 遍历传入的列表for vote in classList:# 如果元素不在字典中,将其加入字典并初始化计数为0if vote not in classCount.keys():classCount[vote] = 0# 对于列表中的每个元素,增加其在字典中的计数classCount[vote] += 1# 对字典进行排序。这里使用sorted()函数,以字典的值(即元素的计数)作为排序依据。# key=operator.itemgetter(1)指定按照字典的值(第二个元素)来排序。# reverse=True表示降序排序,即出现次数最多的元素会排在最前面。sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)# 返回出现次数最多的元素。sortedClassCount[0]表示排序后的第一个元素(即出现次数最多的元素),# 而sortedClassCount[0][0]则是该元素本身。return sortedClassCount[0][0]

显然我们除了类别特征还有其他特征,我们选择最佳特征进行分割,所谓最佳特征,就是说有最高的信息增益的特征,信息增益的解释在上一节中有:
传送门:机器学习-决策树
最佳特征的索引是 2,对应于我们数据集中的 ‘风速’ 特征。这意味着在当前数据集中,'风速’在划分数据集时能提供最大的信息增益。OK

def chooseBestFeatureToSplit(dataSet):numFeatures = len(dataSet[0]) - 1      # 计算特征的数量(减去最后一列标签)baseEntropy = calcShannonEnt(dataSet)  # 计算数据集当前的熵bestInfoGain = 0.0  # 初始化最佳信息增益bestFeature = -1    # 初始化最佳特征的索引for i in range(numFeatures):  # 遍历所有特征featList = [example[i] for example in dataSet]  # 提取当前特征列的所有值uniqueVals = set(featList)  # 获取当前特征的唯一值集合newEntropy = 0.0  # 初始化新熵for value in uniqueVals:  # 遍历当前特征的每个唯一值subDataSet = splitDataSet(dataSet, i, value)  # 根据当前特征和值分割数据集prob = len(subDataSet) / float(len(dataSet))  # 计算子数据集的比例newEntropy += prob * calcShannonEnt(subDataSet)  # 计算新熵,并累加infoGain = baseEntropy - newEntropy  # 计算信息增益if abs(infoGain) > abs(bestInfoGain):bestInfoGain = infoGain  # 更新最佳信息增益bestFeature = i  # 更新最佳特征索引return bestFeature  # 返回最佳特征的索引

下一步是使用这个特征来分割数据集,并递归地创建决策树。我们将对这个特征的每个唯一值进行分割,并在每个子集上重复此过程。这将形成决策树的不同分支。让我们开始构建决策树。

	bestFeatLabel = labels[bestFeat]myTree = {bestFeatLabel:{}}del(labels[bestFeat])featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)for value in uniqueVals:subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labelsmyTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)

如果一个特征有多个唯一值,那么 uniqueVals 将包含这些值,决策树的每个分支将对应这些值之一。
通过这些步骤,决策树逐渐在数据集的特征上进行分割,直到所有的数据都被正确分类或没有更多的特征可以用来进一步分割。

最终的决策树应该长这样:

{'其他条件2': {'低': '否', '中': '是', '高': {'天气': {'晴朗': '是', '雨天': '否'}}}
}

完整可执行代码

完整的代码如下:


# 计算熵
def calcShannonEnt(dataSet):# 统计实例总数numEntries = len(dataSet)# 字典标签,统计标签出现的次数labelCounts = {}for data in dataSet:# 每个实例的最后一个元素是标签元素currentLabel = data[-1]if currentLabel not in labelCounts:labelCounts[currentLabel] = 0# 为当前类别标签的计数加一labelCounts[currentLabel] += 1# 设置初始熵shannonEnt = 0.0  # 初始化熵为0for key in labelCounts:prob = float(labelCounts[key]) / numEntries  # 计算每个类别标签的出现概率shannonEnt -= prob * log(prob, 2)  # 使用香农熵公式计算并累加熵return shannonEnt  # 返回计算得到的熵def majorityCnt(classList):classCount = {}  # 创建一个空字典,用于存储每个元素及其出现次数# 遍历传入的列表for vote in classList:# 如果元素不在字典中,将其加入字典并初始化计数为0if vote not in classCount.keys():classCount[vote] = 0# 对于列表中的每个元素,增加其在字典中的计数classCount[vote] += 1# 对字典进行排序。这里使用sorted()函数,以字典的值(即元素的计数)作为排序依据。# key=operator.itemgetter(1)指定按照字典的值(第二个元素)来排序。# reverse=True表示降序排序,即出现次数最多的元素会排在最前面。sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)# 返回出现次数最多的元素。sortedClassCount[0]表示排序后的第一个元素(即出现次数最多的元素),# 而sortedClassCount[0][0]则是该元素本身。return sortedClassCount[0][0]def splitDataSet(dataSet, axis, value):retDataSet = []  # 创建一个新的列表用于存放分割后的数据集for featVec in dataSet:  # 遍历数据集中的每个样本if featVec[axis] == value:  # 检查当前样本在指定特征轴上的值是否等于给定的值reducedFeatVec = featVec[:axis]  # 截取当前样本直到指定特征轴的部分reducedFeatVec.extend(featVec[axis+1:])  # 将指定特征轴之后的部分添加到截取的列表中retDataSet.append(reducedFeatVec)  # 将处理后的样本添加到分割后的数据集列表中return retDataSet  # 返回分割后的数据集def chooseBestFeatureToSplit(dataSet):numFeatures = len(dataSet[0]) - 1      # 计算特征的数量(减去最后一列标签)baseEntropy = calcShannonEnt(dataSet)  # 计算数据集当前的熵bestInfoGain = 0.0  # 初始化最佳信息增益bestFeature = -1    # 初始化最佳特征的索引for i in range(numFeatures):  # 遍历所有特征featList = [example[i] for example in dataSet]  # 提取当前特征列的所有值uniqueVals = set(featList)  # 获取当前特征的唯一值集合newEntropy = 0.0  # 初始化新熵for value in uniqueVals:  # 遍历当前特征的每个唯一值subDataSet = splitDataSet(dataSet, i, value)  # 根据当前特征和值分割数据集prob = len(subDataSet) / float(len(dataSet))  # 计算子数据集的比例newEntropy += prob * calcShannonEnt(subDataSet)  # 计算新熵,并累加infoGain = baseEntropy - newEntropy  # 计算信息增益if abs(infoGain) > abs(bestInfoGain):bestInfoGain = infoGain  # 更新最佳信息增益bestFeature = i  # 更新最佳特征索引return bestFeature  # 返回最佳特征的索引def createTree(dataSet,labels):classList = [example[-1] for example in dataSet]if classList.count(classList[0]) == len(classList):return classList[0]#stop splitting when all of the classes are equalif len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSetreturn majorityCnt(classList)bestFeat = chooseBestFeatureToSplit(dataSet)bestFeatLabel = labels[bestFeat]myTree = {bestFeatLabel:{}}del(labels[bestFeat])featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)for value in uniqueVals:subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labelsmyTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)return myTree

这是完整的代码,可以试着玩一下,可玩性还是ok的。

结束

决策树的案例到此结束,事实上和IF比较相似。

相关文章:

机器学习 -决策树的案例

场景 我们对决策树的基本概念和算法其实已经有过了解,那我们如何利用决策树解决问题呢? 构建决策树 数据准备 我们准备了一些数据如下: # 定义新的数据集 new_dataSet [[晴朗, 是, 高, 是],[雨天, 否, 低, 否],[阴天, 是, 中, 是],[晴朗…...

04、Kafka ------ 各个功能的作用解释(Cluster、集群、Broker、位移主题、复制因子、领导者副本、主题)

目录 启动命令:CMAK的用法★ 在CMAK中添加 Cluster★ 在CMAK中查看指定集群★ 在CMAK中查看 Broker★ 位移主题★ 复制因子★ 领导者副本和追随者副本★ 查看主题 启动命令: 1、启动 zookeeper 服务器端 小黑窗输入命令: zkServer 2、启动 …...

1、C语言:数据类型/运算符与表达式

数据类型/运算符/表达式 1.数据类型与长度2.常量3.声明4. 运算符5. 表达式 1.数据类型与长度 基本数据类型 类型说明char字符型,占用一个字节,可以存放本地字符集中的一个字符int整型,通常反映了所有机器中整数的最自然长度float单精度浮点…...

[ffmpeg系列 03] 文件、流地址(视频)解码为YUV

一 代码 ffmpeg版本5.1.2,dll是:ffmpeg-5.1.2-full_build-shared。x64的。 文件、流地址对使用者来说是一样。 流地址(RTMP、HTTP-FLV、RTSP等):信令完成后,才进行音视频传输。信令包括音视频格式、参数等协商。 接流的在实际…...

python算法每日一练:连续子数组的最大和

这是一道关于动态规划的算法题: 题目描述: 给定一个整数数组 nums,请找出该数组中连续子数组的最大和,并返回这个最大和。 示例: 输入:[-2, 1, -3, 4, -1, 2, 1, -5, 4] 输出:6 解释&#xff…...

一个vue3的tree组件

https://download.csdn.net/download/weixin_41012767/88709466...

新手练习项目 4:简易2048游戏的实现(C++)

名人说:莫听穿林打叶声,何妨吟啸且徐行。—— 苏轼《定风波莫听穿林打叶声》 Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder) 目录 一、效果图二、代码(带注释)三、说明 一、效果图 二、代码(带…...

2023年度总结:技术沉淀、持续学习

2023年度总结:技术沉淀、持续学习 一、引言 今年是我毕业的第二个年头,也是完整的一年,到了做年终总结的时候了 这一年谈了女朋友,学习了不少技术,是充实且美好的一年! 首先先看年初定的小目标&#xf…...

Unity 利用UGUI之Slider制作进度条

在Unity中使用Slider和Text组件可以制作简单的进度条。 首先在场景中右键->UI->Slider,新建一个Slider组件: 同样方法新建一个Text组件,最终如图: 创建一个进度模拟脚本,Slider_Progressbar.cs using System.C…...

OCS2 入门教程(四)- 机器人示例

系列文章目录 前言 OCS2 包含多个机器人示例。我们在此简要讨论每个示例的主要特点。 System State Dim. Input Dim. Constrained Caching Double Integrator 2 1 No No Cartpole 4 1 Yes No Ballbot 10 3 No No Quadrotor 12 4 No No Mobile Manipul…...

FreeRTOS学习第6篇–任务状态挂起恢复删除等操作

目录 FreeRTOS学习第6篇--任务状态挂起恢复删除等操作任务的状态设计实验IRReceiver_Task任务相关代码片段实验现象本文中使用的测试工程 FreeRTOS学习第6篇–任务状态挂起恢复删除等操作 本文目标:学习与使用FreeRTOS中的几项操作,有挂起恢复删除等操作…...

BLE Mesh蓝牙组网技术详细解析之Access Layer访问层(六)

目录 一、什么是BLE Mesh Access Layer访问层? 二、Access payload 2.1 Opcode 三、Access layer behavior 3.1 Access layer发送消息的流程 3.2 Access layer接收消息的流程 3.3 Unacknowledged and acknowledged messages 3.3.1 Unacknowledged message …...

Netlink 通信机制

文章目录 前言一、Netlink 介绍二、示例代码参考资料 前言 一、Netlink 介绍 Netlink套接字是用以实现用户进程与内核进程通信的一种特殊的进程间通信(IPC) ,也是网络应用程序与内核通信的最常用的接口。 在Linux 内核中,使用netlink 进行应用与内核通信的应用有…...

2024.1.8每日一题

LeetCode 回旋镖的数量 447. 回旋镖的数量 - 力扣(LeetCode) 题目描述 给定平面上 n 对 互不相同 的点 points ,其中 points[i] [xi, yi] 。回旋镖 是由点 (i, j, k) 表示的元组 ,其中 i 和 j 之间的距离和 i 和 k 之间的欧式…...

看了致远OA的表单设计后的思考

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码: https://gitee.com/nbacheng/n…...

mmdetection训练自己的数据集

mmdetection训练自己的数据集 这里写目录标题 mmdetection训练自己的数据集一: 环境搭建二:数据集格式转换(yolo转coco格式)yolo数据集格式coco数据集格式yolo转coco数据集格式yolo转coco数据集格式的代码 三: 训练dataset数据文件配置config…...

MySQL取出N列里最大or最小的一个数据

如题,现在有3列,都是数字类型,要取出这3列里最大或最小的的一个数字 -- N列取最小 SELECT LEAST(temperature_a,temperature_b,temperature_c) min FROM infrared_heat-- N列取最大 SELECT GREATEST(temperature_a,temperature_b,temperat…...

编写.NET的Dockerfile文件构建镜像

创建一个WebApi项目,并且创建一个Dockerfile空文件,添加以下代码,7.0代表的你项目使用的SDK的版本,构建的时候也需要选择好指定的镜像tag FROM mcr.microsoft.com/dotnet/aspnet:7.0 AS base WORKDIR /app EXPOSE 80 EXPOSE 443F…...

【C语言】浙大版C语言程序设计(第三版) 练习7-4 找出不是两个数组共有的元素

前言 最近在学习浙大版的《C语言程序设计》(第三版)教材,同步在PTA平台上做对应的练习题。这道练习题花了比较长的时间,于是就写篇博文记录一下我的算法和代码。 2024.01.03 题目 练习7-4 找出不是两个数组共有的元素 作者 张彤…...

7.27 SpringBoot项目实战 之 整合Swagger

文章目录 前言一、Maven依赖二、编写Swagger配置类三、编写接口配置3.1 控制器Controller 配置描述3.2 接口API 配置描述3.3 参数配置描述3.4 忽略API四、全局参数配置五、启用增强功能六、调试前言 在我们实现了那么多API以后,进入前后端联调阶段,需要给前端同学提供接口文…...

【kafka】Golang实现分布式Masscan任务调度系统

要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...