MYSQL篇--索引高频面试题
mysql索引
1什么是索引?
索引说白了就是一种数据结构,可以协助快速查询数据,以及更新数据库表中的数据,更通俗的来说索引其实就是目录,通过对数据建立索引形成目录,便于去查询数据,而mysql索引的实现通常是B树和B+树
2索引有哪些优缺点?
索引的优点
可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
索引的缺点
时间方面:创建索引和维护索引要耗费时间,具体地,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,会降低增/改/删的执行效率;
空间方面:索引需要占物理空间。
3 索引的使用场景
索引通常可以建立在where,order by语句之后,通过建立索引,避免全表扫描,可以大大的提高查询性能,
同时如果要查询的字段都建立过索引,那么引擎会直接在索引表中查询而不会访问原始数据(否则只要有一个字段没有建立索引就会做全表扫描),这叫索引覆盖。因此我们需要尽可能的在select后只写必要的查询字段,以增加索引覆盖的几率
4 索引有哪几种类型
主键索引: 数据列不允许重复,不允许为NULL,一个表只能有一个主键。
唯一索引: 数据列不允许重复,允许为NULL值,一个表允许多个列创建唯一索引。
可以通过 ALTER TABLE table_name ADD UNIQUE (column); 创建唯一索引
可以通过 ALTER TABLE table_name ADD UNIQUE (column1,column2);创建唯一组合索引
普通索引: 基本的索引类型,没有唯一性的限制,允许为NULL值。
可以通过ALTER TABLE table_name ADD INDEX index_name (column);创建普通索引
可以通过ALTER TABLE table_name ADD INDEX index_name(column1,column2, column3);创建组合索引
全文索引: 是目前搜索引擎使用的一种关键技术。
可以通过ALTER TABLE table_name ADD FULLTEXT (column);创建全文索引
5 创建索引的原则
索引虽好,但也不是无限制的使用,最好符合一下几个原则
1) 最左前缀匹配原则,组合索引非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,
如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
2)较频繁作为查询条件的字段才去创建索引
3)更新频繁字段不适合创建索引
4)区分度不高的字段不适合做索引列(如性别,男女未知,最多也就三种,区分度实在太低) --当然也不一定,对于一些任务表 我们是可以对任务状态建立索引,以此来检索需要处理的任务状态;
5)尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
6)定义有外键的数据列一定要建立索引。
7)对于那些查询中很少涉及的列,重复值比较多的列不要建立索引。
8)对于定义为text、image和bit的数据类型的列不要建立索引。
6 百万级别或以上的数据如何删除并重建
- 所以我们想要删除百万数据的时候可以先删除索引
- 然后删除其中无用数据
- 删除完成后重新创建索引
7 什么是最左前缀原则?
1最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,
比如a = 1 and b = 2 and c > 3 and d = 4
如果建立(a,b,c,d)顺序的索引,d是用不到索引的,
如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整
2 =和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
8 B树和B+树的区别
1 对于B+树来说 它的数据是存放在主键索引的叶子节点上的,而对于B树来说,它是将键和值即存放在叶子节点也存放在内部节点
2 B+树的叶子节点之间相互连接,而B树叶子节点之间相互独立

9 使用B+树的好处(为啥使用B+树不使用B树)
很明显 B+树他的特点是数据只存在在主键索引的叶子节点的,而非叶子节点存放的是索引,这也就意味着在相同数据量的情况下,B+树的非叶子节点可以存放更多的索引,树的层级更少,io次数也就更少
同时mysql-innodb存储引擎下它的叶子节点之间用双向指针进行连接(传统的B+树是单向指针)这也就意味着它可以快速的进行范围查找,也就是B+树只需要使用O(logN)时间找到最小的一个节点,然后通过链进行O(N)的顺序遍历即可。
而B树则需要对树的每一层进行遍历,这会需要更多的内存置换次数,因此也就需要花费更多的时间
10 Hash索引和B+树所有有什么区别或者说优劣呢?
首先要知道Hash索引和B+树索引的底层实现原理:
hash索引底层就是hash表,进行查找时,调用一次hash函数就可以获取到相应的键值,之后进行回表查询获得实际数据。
B+树底层实现是多路平衡查找树。
对于每一次的查询都是从根节点出发,查找到叶子节点方可以获得所查键值,然后根据查询判断是否需要回表查询数据。
那么可以看出他们有以下的不同:
hash索引进行等值查询更快(一般情况下),但是却无法进行范围查询。 因为在hash索引中经过hash函数建立索引之后,索引的顺序与原顺序无法保持一致,不能支持范围查询。
而B+树的的所有节点皆遵循(左节点小于父节点,右节点大于父节点,多叉树也类似),天然支持范围。
hash索引不支持使用索引进行排序,原理同上。
hash索引不支持模糊查询以及多列索引的最左前缀匹配。原理也是因为hash函数的不可预测。AAAA和AAAAB的索引没有相关性。
hash索引任何时候都避免不了回表查询数据,而B+树在符合某些条件(聚簇索引,覆盖索引等)的时候可以只通过索引完成查询。
hash索引虽然在等值查询上较快,但是不稳定。性能不可预测,当某个键值存
在大量重复的时候,发生hash碰撞,此时效率可能极差。而B+树的查询效率比较稳定,对于所有的查询都是从根节点到叶子节点,且树的高度较低。
因此,在大多数情况下,直接选择B+树索引可以获得稳定且较好的查询速度。而不需要使用hash索引。
11 什么是聚簇索引?何时使用聚簇索引与非聚簇索引
聚簇索引:说白了也就是数据和索引在一块,找到索引也就找到了数据
非聚簇索引:即数据和索引分开存储,索引结构的叶子节点指向了数据的对应行,myisam通过key_buffer把索引先缓存到内存中,当需要访问数据时(通过索引访问数据),在内存中直接搜索索引,然后通过索引找到磁盘相应数据,这也就是为什么索引不在key buffer命中时,速度慢的原因
澄清一个概念:innodb中,在聚簇索引之上创建的索引称之为辅助索引,
辅助索引访问数据总是需要二次查找,非聚簇索引都是辅助索引,像复合索引、前缀索引、唯一索引,辅助索引叶子节点存储的不再是行的物理位置,而是主键值
何时使用聚簇索引与非聚簇索引

12 非聚簇索引一定会回表查询吗?
不一定,这涉及到查询语句所要求的字段是否全部命中了索引,如果全部命中了索引,那么就不必再进行回表查询。
举个简单的例子,假设我们在员工表的年龄上建立了索引,那么当进行select age from employee where age < 20的查询时,在索引的叶子节点上,已经包含了age信息,不会再次进行回表查询。
13 联合索引是什么?为什么需要注意联合索引中的顺序?
MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,
如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。
具体原因为:
MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,
那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。
当进行查询时,此时索引仅仅按照name严格有序,因此必须首先使用name字段进行等值查询,之后对于匹配到的列而言,其按照age字段严格有序,此时可以使用age字段用做索引查找,以此类推。因此在建立联合索引的时候应该注意索引列的顺序,
一般情况下,将查询需求频繁或者字段选择性高的列放在前面。
此外可以根据特例的查询或者表结构进行单独的调整
相关文章:
MYSQL篇--索引高频面试题
mysql索引 1什么是索引? 索引说白了就是一种数据结构,可以协助快速查询数据,以及更新数据库表中的数据,更通俗的来说索引其实就是目录,通过对数据建立索引形成目录,便于去查询数据,而mysql索引…...
视频号小店怎么上架商品?实操分享,干货满满!
我是电商珠珠 视频号小店从22年7月到现在也不过才发展了一年,它的风口才刚刚开始。 平台为了吸引商家入驻,会将大量红利向商家倾斜,只要把握住风口,就会很快起飞。 视频号小店对于很多人来说,都是新平台,…...
Python 常用数据类型
Python 常用数据类型有以下这些: 数据类型中文解析例子int整数,表示整数值1、2float浮点数,表示带有小数点的数值3.14、2.718complex复数,表示实部和虚部组成的复数12j、3-4jstr字符串,表示文本数据,用引号…...
基于yolov2深度学习网络的车辆行人检测算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 .......................................................... load yolov2.mat% 加载训练好的…...
【QT】中英文切换
很高兴在雪易的CSDN遇见你 前言 本文分享QT中如何进行中英文切换,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U^…...
vue实现代码编辑器,无坑使用CodeMirror
vue实现代码编辑器,无坑使用CodeMirror vue实现代码编辑器,使用codemirror5 坑:本打算cv一下网上的,结果发现网上的博客教程都是错的,而且博客已经是几年前的了,我重新看了github上的,发现安装的命令都已经不一样了。我…...
MR实战:网址去重
文章目录 一、实战概述二、提出任务三、完成任务(一)准备数据1、在虚拟机上创建文本文件2、上传文件到HDFS指定目录 (二)实现步骤1、创建Maven项目2、添加相关依赖3、创建日志属性文件4、创建网址去重映射器类5、创建网址去重归并…...
linux 内核编译安装
一、配置 默认配置 make ARCHarm CROSS_COMPILEarm-linux-gnueabihf- omap2plus_defconfig原配置 make ARCHarm CROSS_COMPILEarm-linux-gnueabihf- oldconfig 重新配置 make ARCHarm CROSS_COMPILEarm-linux-gnueabihf- menuconfig二 kernel zImage make ARCHarm CRO…...
hash基础知识(算法村第五关青铜挑战)
一、Hash的概念和基本特征 哈希(Hash)也称为散列,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,这个输出值就是散列值。 二、碰撞处理方法(2种) 在上面的例子中,我们发现有些在Hsh中很多位置可能要存两个甚…...
Linux第8步_USB设置
学习完设置“虚拟机的电源”后,接着学习通过鼠标点击操作U盘,目的是了解USB设置。 1、在桌面,双击“VMware Workstation Pro”图标,得到下图: 2、点击“编辑虚拟机”,得到下图: 只要点击编辑虚…...
第五节 强制规范commit提交 .husky/commit-msg: no-such file or directory问题解决办法
系列文章目录 目录 系列文章目录 前言 操作方法 总结 前言 在每次Git提交时,强制严格执行制定的规范。 操作方法 npm 安装commitlist 进行校验 npm install --save-dev @commitlint/config-conventional@12.1.4 @commitlint/cli@12...
2024年了,难道还不会使用谷歌DevTools么?
我相信您一定对Chrome浏览器非常熟悉,因为它是前端开发者最亲密的伙伴。我们可以使用它查看网络请求、分析网页性能以及调试最新的JavaScript功能。 除此之外,它还提供了许多功能强大但不常见的功能,这些功能可以大大提高我们的开发效率。 让我们来看看。 1. 重新发送XHR…...
springboot(ssm生产管理ERP系统 wms出入库管理系统Java系统
springboot(ssm生产管理ERP系统 wms出入库管理系统Java系统 开发语言:Java 框架:ssm/springboot vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.7(或8.0)…...
通过使用别名让 SQL 更简短-数据库教程shulanxt.com-帆软软件有限公司
MySQL视频教程导航 https://www.shulanxt.com/database/mysqlvideo/p1 SQL 别名 SQL 别名 通过使用 SQL,可以为表名称或列名称指定别名。 基本上,创建别名是为了让列名称的可读性更强。 列的 SQL 别名语法 SELECT column_name AS alias_name FROM …...
最优化理论分析复习--最优性条件(一)
文章目录 上一篇无约束问题的极值条件约束极值问题的最优性条件基本概念只有不等式约束时 下一篇 上一篇 最优化理论复习–对偶单纯形方法及灵敏度分析 无约束问题的极值条件 由于是拓展到向量空间 R n R^n Rn, 所以可由高数中的极值条件进行类比 一阶必要条件 设函数 f (…...
基于WIFI指纹的室内定位算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1WIFI指纹定位原理 4.2 指纹数据库建立 4.3定位 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .....................................…...
密码学:一文读懂非对称密码体制
文章目录 前言非对称密码体制的保密通信模型私钥加密-公钥解密的保密通信模型公钥加密-私钥解密的保密通信模型 复合式的非对称密码系统散列函数数字签名数字签名满足的三个基本要求先加密还是先签名?数字签名成为公钥基础设施以及许多网络安全机制的基础什么是单向…...
2_工厂设计_工厂方法和抽象工厂
工厂设计模式-工厂方法 1.概念 工厂方法模式(Fatory Method Pattern ) 是指定义一个创建对象的接口,但让实现这个接口的类来决定实例化哪个类,工厂方法让类的实例化推迟到子类中进行。 在工厂方法模式中用户只需要关心所需产品对应的工厂,…...
k8s之pod进阶
1.k8s的pod重启策略 Always :不论正常退出还是非正常退出都重启deployment的yaml文件只能是always pod的yaml三种模式都可以。 OnFailure:只有状态码非0才会重启,正常退出不重启 Never:正常退出和非正常退出都不重启 容器的退…...
RTTI(运行时类型识别)
RTTI(运行时类型识别) 实验介绍 RTTI 全称 Run Time Type Identification,中文称为 “运行时类型识别”,在程序中使用 typeid 和 dynamic_cast 实现。RTTI 技术允许程序在运行时识别对象的类型。 知识点 typeiddynamic_castRTTI 技术typeid typeid 是 C++ 关键字,用于…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...
AD学习(3)
1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分: (1)PCB焊盘:表层的铜 ,top层的铜 (2)管脚序号:用来关联原理图中的管脚的序号,原理图的序号需要和PCB封装一一…...
Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合
无论是python,或者java 的大型项目中,都会涉及到 自身平台微服务之间的相互调用,以及和第三发平台的 接口对接,那在python 中是怎么实现的呢? 在 Python Web 开发中,FastAPI 和 Django 是两个重要但定位不…...
Java并发编程实战 Day 11:并发设计模式
【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天,今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案,它们不仅提供了优雅的设计思路,还能显著提升系统的性能…...
