当前位置: 首页 > news >正文

粒子群算法优化支持向量SVM的供热量预测,粒子群优化支持向量机SVM回归分析

目录

背影
支持向量机SVM的详细原理
SVM的定义
SVM理论
粒子群算法原理
SVM应用实例,粒子群算法优化支持向量SVM的供热量预测,粒子群优化支持向量机SVM回归分析
代码
结果分析
展望
完整代码:粒子群算法优化支持向量SVM的供热量预测,粒子群优化支持向量机SVM回归分析_lssvm回归预测资源-CSDN文库 https://download.csdn.net/download/abc991835105/87657472

背影

新鲜度预测对现代智能化社会拥有重要意义,本文用自适应粒子群算法改进的SVM进行新鲜度预测

支持向量机SVM的详细原理

SVM的定义

支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。
(1)支持向量机(Support Vector Machine, SVM)是一种对数据进行二分类的广义线性分类器,其分类边界是对学习样本求解的最大间隔超平面。

(2)SVM使用铰链损失函数计算经验风险并在求解系统中加入了正则化项以优化结构风险,是一个具有稀疏性和稳健性的分类器 。

(3)SVM可以通过引入核函

相关文章:

粒子群算法优化支持向量SVM的供热量预测,粒子群优化支持向量机SVM回归分析

目录 背影 支持向量机SVM的详细原理 SVM的定义 SVM理论 粒子群算法原理 SVM应用实例,粒子群算法优化支持向量SVM的供热量预测,粒子群优化支持向量机SVM回归分析 代码 结果分析 展望 完整代码:粒子群算法优化支持向量SVM的供热量预测,粒子群优化支持向量机SVM回归分析_lssv…...

【Verilog】运算符

系列文章 数值(整数,实数,字符串)与数据类型(wire、reg、mem、parameter) 系列文章算术运算符关系运算符相等关系运算符逻辑运算符按位运算符归约运算符移位运算符条件运算符连接和复制运算符 算术运算符 …...

浅析ARMv8体系结构:A64指令集

文章目录 A64指令编码格式加载与存储指令寻址模式变基模式前变基模式后变基模式 PC相对地址模式 伪指令加载与存储指令的变种不同位宽的加载与存储指令多字节内存加载和存储指令基地址偏移量模式前变基模式后变基模式 跳转指令返回指令比较并跳转指令 其它指令内存独占访问指令…...

VSCode安装GitHub Copilot插件方法

VSCode安装GitHub Copilot插件的步骤及注意事项如下: 安装步骤: 确保系统要求: 确保你正在使用的Visual Studio Code版本是最新的,且支持GitHub Copilot。同时,Copilot需要你的操作系统是Windows、macOS或Linux&#x…...

实战:使用docker容器化服务

本文介绍使用docker安装mysql和redis,通过这两个的实战,了解一般的安装容器化服务的流程,体会服务容器化的好处 1.使用docker安装MySQL docker 拉取 mysql 镜像 docker pull mysql:5.7运行 mysql 镜像 docker run -p 3306:3306 --name mysql…...

借用GitHub将typora图片文件快速上传CSDN

前情概要 众所周知,程序员大佬们喜欢用typora软件写代码笔记,写了很多笔记想要放到CSDN上给其他大佬分享,但是在往csdn上搬运的时候,图片总是上传出错,一张一张搞有很麻烦,咋如何搞? 废话不多…...

外包公司干了2个月,技术退步明显了.......

先说一下自己的情况,本科毕业,18年通过校招进入南京某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能…...

PTA✨C语言 组合数的和

7-5 组合数的和 分数 15 全屏浏览题目 切换布局 作者 陈越 单位 浙江大学 给定 N 个非 0 的个位数字,用其中任意 2 个数字都可以组合成 1 个 2 位的数字。要求所有可能组合出来的 2 位数字的和。例如给定 2、5、8,则可以组合出:25、28、5…...

这些开源自动化测试框架,会用等于白嫖一个w

作者:黑马测试 链接:https://www.zhihu.com/question/19923336/answer/2585952461 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 随着计算机技术人员的大量增加,通过编写代码来…...

代码随想录第三十六天——无重叠区间,划分字母区间,合并区间

leetcode 435. 无重叠区间 题目链接:无重叠区间 方法一:按右边界排序 按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数。此时问题转化为求非交叉区间的最大个数。 版本一&#…...

Python数据分析:入门到实践

一、引言 (用手机写的,明天重新排版。) 在当今数据驱动的时代,数据分析已经成为各行各业不可或缺的一部分。Python作为一种高效、易学的编程语言,在数据分析领域具有广泛的应用。本文将带你从Python数据分析的入门知…...

第7章-第9节-Java中的Stream流(链式调用)

1、什么是Stream流 Lambda表达式,基于Lambda所带来的函数式编程,又引入了一个全新的Stream概念,用于解决集合类库既有的鼻端。 2、案例 假设现在有一个需求, 将list集合中姓张的元素过滤到一个新的集合中;然后将过滤…...

创建一个矩形中有两个三角形

#include <glad/glad.h> #include <GLFW/glfw3.h>#include <iostream>float vertices[] {// 第一个三角形0.5f, 0.5f, 0.0f, // 右上0.5f, -0.5f, 0.0f, // 右下-0.5f, -0.5f, 0.0f, // 左下-0.5f, 0.5f, 0.0f, // 左上 };unsigned i…...

Open3D 基于kdtree树的邻近点搜索(10)

Open3D 基于kdtree树的邻近点搜索(10) 一、算法简介二、算法实现1.K邻近点搜索2.R邻域点搜索三、结果释义一、算法简介 KD 树(k-dimensional tree)是一种用于组织 k 维空间中点的数据结构,旨在提供高效的 k 最近邻搜索和范围搜索(如半径邻域搜索)。KD 树通过递归地将空间…...

c++实现支持动态扩容的栈(stack)

1.在栈容量满时自动扩容: 支持自动扩容栈实现: // // myStack.hpp // algo_demo // // Created by Hacker X on 2024/1/9. //#ifndef myStack_hpp #define myStack_hpp #include <stdio.h> #include <string.h> //栈实现 //1.入栈 //2.出栈 //3.空栈 //4.满栈 …...

举例说明计算机视觉(CV)技术的优势和挑战。

计算机视觉&#xff08;Computer Vision&#xff0c;CV&#xff09;技术是指使计算机能够理解和解释视觉数据的能力。CV技术在很多领域都有广泛的应用&#xff0c;包括图像处理、目标检测、人脸识别、自动驾驶等。以下是CV技术的一些优势和挑战的例子&#xff1a; 优势&#x…...

如何利用docker来部署war包项目

首先编写dockerfile文件&#xff1a; # 使用官方的Tomcat镜像作为基础镜像 FROM tomcat:9.0# 将war包复制到容器的webapps目录下 COPY xxxx.war /usr/local/tomcat/webapps/# 暴露Tomcat的默认端口 EXPOSE 8080 编写docker-compose.yml文件&#xff1a; version: 3 services…...

SpringBoot 如何增强PageHelper入参的健壮性

PageHelper.startPage(int pageNum, int pageSize, boolean count) 参数为外部输入&#xff0c;故存在异常输入场景。比如 pageNum 和 pageSize 输入的值 负数 或者 0&#xff0c;所以引入PageUtils来对入参进行判断矫正&#xff0c;从而避免引入异常。 第1步&#xff1a;支持…...

书生·浦语大模型全链路开源体系 学习笔记 第三课

huggingface-cli: command not found 按照该文档解决即可 https://github.com/huggingface/huggingface_hub/issues/1079 具体如下&#xff1a; 1、确保环境已将安装huggingface-cli 2、版本需要旧版&#xff0c;pip install huggingface_hub0.20.1 3、再按如下执行 # T…...

CodeGPT,你的智能编码助手—CSDN出品

CodeGPT是由CSDN打造的一款生成式AI产品&#xff0c;专为开发者量身定制。 无论是在学习新技术还是在实际工作中遇到的各类计算机和开发难题&#xff0c;CodeGPT都能提供强大的支持。其涵盖的功能包括代码优化、续写、解释、提问等&#xff0c;还能生成精准的注释和创作相关内…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...