TensorRT加速推理入门-1:Pytorch转ONNX
这篇文章,用于记录将TransReID的pytorch模型转换为onnx的学习过程,期间参考和学习了许多大佬编写的博客,在参考文章这一章节中都已列出,非常感谢。
1. 在pytorch下使用ONNX主要步骤
1.1. 环境准备
安装onnxruntime包
安装教程可参考:
onnx模型预测环境安装笔记
onnxruntime配置
CPU版本:
直接pip安装
pip install onnxruntime
GPU版本:
先查看自己CUDA版本然后在下面的链接去找对应的onnxruntime的版本
CUDA版本的查询,可参考这个
onnxruntime版本查询
查询到对应版本,直接pip安装即可,例如
pip install onnxruntime-gpu==1.13.1
安装onnxsim包
pip install onnx-simplifier
1.2. 搭建 PyTorch 模型(TransReID)
def get_net(model_path,opt_=False):if opt_:cfg.merge_from_file("/home/TransReID-main/configs/OCC_Duke/vit_transreid_stride.yml")#cfg.freeze()train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num = make_dataloader(cfg)net = make_model(cfg, num_class=num_classes, camera_num=camera_num, view_num = view_num)else:cfg.merge_from_file("/home/TransReID-main/configs/OCC_Duke/vit_transreid_stride.yml")train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num = make_dataloader(cfg)net = make_model(cfg, num_class=num_classes, camera_num=camera_num, view_num = view_num)#state_dict = torch.load(model_path, map_location=torch.device('cpu'))['state_dict']state_dict = torch.load(model_path, map_location=torch.device('cpu'))model_state_dict=net.state_dict()for key in list(state_dict.keys()):if key[7:] in model_state_dict.keys():model_state_dict[key[7:]]=state_dict[key]net.load_state_dict(model_state_dict)return net
1.3. pytorch模型转换为 ONNX 模型
这个提供了静态转换(静态转换支持静态输入)和动态转换(动态转换支持动态输入)两个函数,可根据需要选择。
def convert_onnx_dynamic(model,save_path,simp=False):x = torch.randn(4, 3, 256,128)input_name = 'input'output_name = 'class'torch.onnx.export(model,x,save_path,input_names = [input_name],output_names = [output_name],dynamic_axes= {input_name: {0: 'B'},output_name: {0: 'B'}})if simp:onnx_model = onnx.load(save_path) model_simp, check = simplify(onnx_model,input_shapes={'input':(4,3,256,128)},dynamic_input_shape=True)assert check, "Simplified ONNX model could not be validated"onnx.save(model_simp, save_path)print('simplify onnx done')def convert_onnx(model,save_path,batch=1,simp=False):input_names = ['input']output_names=['class']x = torch.randn(batch, 3, 256, 128)for para in model.parameters():para.requires_grad = False# model_script = torch.jit.script(model)# model_trace = torch.jit.trace(model, x)torch.onnx.export(model, x, save_path,input_names =input_names,output_names=output_names, opset_version=12)if simp:onnx_model = onnx.load(save_path) model_simp, check = simplify(onnx_model)assert check, "Simplified ONNX model could not be validated"onnx.save(model_simp, save_path)print('simplify onnx done')
pytorch 转 onnx 仅仅需要一个函数 torch.onnx.export,来看看该函数的参数和用法。
torch.onnx.export(model, args, path, export_params, verbose, input_names, output_names, do_constant_folding, dynamic_axes, opset_version)
| 参数 | 用法 |
|---|---|
| model | 需要导出的pytorch模型 |
| args | 模型的任意一组输入(模拟实际输入数据的大小,比如三通道的512*512大小的图片,就可以设置为torch.randn(1, 3 , 512, 512) |
| path | 输出的onnx模型的位置,例如yolov5.onnx |
| export_params | 输出模型是否可训练。default=True,表示导出trained model, 否则untrained。 |
| verbose | 是否打印模型转换信息,default=None |
| opset_version | onnx算子集的版本 |
| input_names | 模型的输入节点名称(自己定义的),如果不写,默认输出数字类型 的名称 |
| output_name | 模型的输出节点名称(自己定义的), 如果不写,默认输出数字类型的名称 |
| do_constant_folding | 是否使用常量折叠,默认即可。default=True。 |
| dynamic_axes | 设置动态输入输出,用法:“输入输出名:[支持动态的维度”,如"支持动态的维度设置为[0, 2, 3]"则表示第0维,第2维,第3维支持动态输入输出。 |
| 模型的输入输出有时是可变的,如rnn,或者输出图像的batch可变,可通过该参数设置。如输入层的shape为(b, 3, h, w), 其中batch、height、width是可变的,但是chancel是固定三通道。 | 格式如下:1)仅list(int)dynamic_axes={‘input’:[0, 2, 3], ‘output’:{0:‘batch’, 1:‘c’}} 2)仅dict<int, string> dynamic_axes={‘input’:{‘input’:{0:‘batch’, 2:‘height’, 3:‘width’}, ‘output’:{0:‘batch’, 1:‘c’}} 3)mixed dynamic_axes={‘input’:{0:‘batch’, 2:‘height’, 3:‘width’}, ‘output’:[0,1]} |
注意onnx不支持结构中带有if语句的模型,如:
当我们在网络中嵌入一些if选择性的语句时,不好意思,模型不会考虑这些, 它只会记录下运行时走过的节点,不会根据if的实际情况来选择走哪条路, 所以势必会丢弃一部分节点,而丢弃哪些则是根据我们转模型时的输入来定的,一旦指定了,后面运行onnx模型都会如此。另一个问题就是,我们在代码中有一些循环或者迭代的操作时,要注意,尤其是我们的迭代次数是根据输入不同 会有变化时,也会因为这些操作导致后面的推理出现意外错误,正像前面说的,模型转换不喜欢不确定的东西,它会把这些变量dump成常量,所以会导致推理 错误。
对于实际部署的需求,很多时候pytorch是不满足的,所以需要转成其他模型格式来加快推理。常用的就是onnx,onnx天然支持很多框架模型的转换,如Pytorch,tf,darknet,caffe等。而pytorch也给我们提供了对应的接口,就是torch.onnx.export。下面具体到每一步。
原文来自:Windows下使用ONNX+pytorch记录
首先,环境和依赖:onnx包,cuda和cudnn,我用的版本号分别是1.7.0, 10.1, 7.5.4。
我们需要提供一个pytorch的模型,然后调用torch.onnx.export,同时还需要提供另外一些参数。我们一个个来分析,一是我们要给一个dummy input, 就是随便指定一个和我们实际输入时尺寸相同的一个随机数,是Tensor类型的,然后我们要指定转换的device,即是在gpu还是cpu。 然后我们要给一个input_names和output_names,这是绑定输入和输出,当然输入和输出可能不止一个,那就根据实际的输入和输出个数来给出name列表,
如果我们指定的输入和输出名和实际的网络结构不一致的话,onnx会自动给我们设置一个名字。一般是数字字符串。
输入和输出的绑定之后,我我们们可以看到还有一个参数叫做dynamic_axes,这是做什么的呢?哦,这是指定动态输入的,为了满足我们实际推理过程中,可能每张图片的分辨率不一样,所以允许我们给每个维度设置动态输入,这样是不是灵活多了?然后,设置完这些参数和输入,我们就可以开始转换模型了,如果不报错就是成功了,会在当前目录下生成一个.onnx文件。
原文来自: 一文掌握Pytorch-onnx-tensorrt模型转换
1.4 onnx-simplifier简化onnx模型
model_simp, check = simplify(onnx_model,input_shapes={'input':(4,3,256,128)},dynamic_input_shape=True)
Pytorch转换为ONNX的完整代码:pytorch_to_onnx.py
import json
import os
import onnx
import torch
import argparse
import torch.nn as nn
from onnxsim import simplify
from collections import OrderedDict
import torch.nn.functional as F# TransReID的模型构建需要的包
from model.make_model import *
from config import cfg
from datasets import make_dataloader os.environ['CUDA_VISIBLE_DEVICES'] = '1'def convert_onnx_dynamic(model,save_path,simp=False):x = torch.randn(4, 3, 256,128)input_name = 'input'output_name = 'class'torch.onnx.export(model,x,save_path,input_names = [input_name],output_names = [output_name],dynamic_axes= {input_name: {0: 'B'},output_name: {0: 'B'}})if simp:onnx_model = onnx.load(save_path) model_simp, check = simplify(onnx_model,input_shapes={'input':(4,3,256,128)},dynamic_input_shape=True)assert check, "Simplified ONNX model could not be validated"onnx.save(model_simp, save_path)print('simplify onnx done')def convert_onnx(model,save_path,batch=1,simp=False):input_names = ['input']output_names=['class']x = torch.randn(batch, 3, 256, 128)for para in model.parameters():para.requires_grad = False# model_script = torch.jit.script(model)# model_trace = torch.jit.trace(model, x)torch.onnx.export(model, x, save_path,input_names =input_names,output_names=output_names, opset_version=12)if simp:onnx_model = onnx.load(save_path) model_simp, check = simplify(onnx_model)assert check, "Simplified ONNX model could not be validated"onnx.save(model_simp, save_path)print('simplify onnx done')def get_net(model_path,opt_=False):if opt_:cfg.merge_from_file("/home/TransReID-main/configs/OCC_Duke/vit_transreid_stride.yml")#cfg.freeze()train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num = make_dataloader(cfg)net = make_model(cfg, num_class=num_classes, camera_num=camera_num, view_num = view_num)else:cfg.merge_from_file("/home/TransReID-main/configs/OCC_Duke/vit_transreid_stride.yml")train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num = make_dataloader(cfg)net = make_model(cfg, num_class=num_classes, camera_num=camera_num, view_num = view_num)#state_dict = torch.load(model_path, map_location=torch.device('cpu'))['state_dict']state_dict = torch.load(model_path, map_location=torch.device('cpu'))model_state_dict=net.state_dict()for key in list(state_dict.keys()):if key[7:] in model_state_dict.keys():model_state_dict[key[7:]]=state_dict[key]net.load_state_dict(model_state_dict)return netif __name__=="__main__":parser = argparse.ArgumentParser(description='torch to onnx describe.')parser.add_argument("--model_path",type = str,default="/home/TransReID-main/weights/vit_transreid_occ_duke.pth",help="torch weight path, default is MobileViT_Pytorch/weights-file/model_best.pth.tar.")parser.add_argument("--save_path",type=str,default="/home/TransReID-main/weights/vit_transreid_occ_duke_v2.onnx",help="save direction of onnx models,default is ./target/MobileViT.onnx.")parser.add_argument("--batch",type=int,default=1,help="batchsize of onnx models, default is 1.")parser.add_argument("--opt",default=False, action='store_true',help="model optmization , default is False.")parser.add_argument("--dynamic",default=False, action='store_true',help="export dynamic onnx model , default is False.")args = parser.parse_args()
# print(args)#net = get_net(args.model_path,opt_=args.opt)net = get_net(args.model_path)if args.dynamic:convert_onnx_dynamic(net,args.save_path,simp=True)else:with torch.no_grad():convert_onnx(net,args.save_path,simp=True,batch=args.batch)
1.5 查看onnx模型
当将pytorch模型保存为 ONNX 之后,可以使用一款名为 Netron 的软件打开 .onnx 文件,查看模型结构。
2. 参考文章
[1] Windows下使用ONNX+pytorch记录
[2] pytorch-onnx-tensorrt全链路简单教程(支持动态输入)
[3] PyTorch语义分割模型转ONNX以及对比转换后的效果(PyTorch2ONNX、Torch2ONNX、pth2onnx、pt2onnx、修改名称、转换、测试、加载ONNX、运行ONNX)
[4] ONNX系列一:ONNX的使用,从转化到推理
相关文章:
TensorRT加速推理入门-1:Pytorch转ONNX
这篇文章,用于记录将TransReID的pytorch模型转换为onnx的学习过程,期间参考和学习了许多大佬编写的博客,在参考文章这一章节中都已列出,非常感谢。 1. 在pytorch下使用ONNX主要步骤 1.1. 环境准备 安装onnxruntime包 安装教程可…...
springboot常用扩展点
当涉及到Spring Boot的扩展和自定义时,Spring Boot提供了一些扩展点,使开发人员可以根据自己的需求轻松地扩展和定制Spring Boot的行为。本篇博客将介绍几个常用的Spring Boot扩展点,并提供相应的代码示例。 1. 自定义Starter(面试常问) Sp…...
19道ElasticSearch面试题(很全)
点击下载《19道ElasticSearch面试题(很全)》 1. elasticsearch的一些调优手段 1、设计阶段调优 (1)根据业务增量需求,采取基于日期模板创建索引,通过 roll over API 滚动索引; (…...
向爬虫而生---Redis 拓宽篇3 <GEO模块>
前言: 继上一章: 向爬虫而生---Redis 拓宽篇2 <Pub/Sub发布订阅>-CSDN博客 这一章的用处其实不是特别大,主要是针对一些地图和距离业务的;就是Redis的GEO模块。 GEO模块是Redis提供的一种高效的地理位置数据管理方案,它允许我们存储和查询…...
Vue项目里实现json对象转formData数据
平常调用后端接口传参都是json对象,当提交表单遇到有附件需要传递时,通常是把附件上传单独做个接口,也有遇到后端让提交接口一并把附件传递到后端,这种情况需要把参数转成formData的数据,需要用到new FormData()。json…...
leetcode刷题记录
栈 2696. 删除子串后的字符串最小长度 哈希表 1. 两数之和 用map来保存每个数和他的索引 383. 赎金信 用map来存储字符的个数 链表 2. 两数相加 指针的移动 动态规划 53. 最大子数组和 2707. 字符串中的额外字符 递归 101. 对称二叉树 数学 1276. 不浪费原料的汉堡…...
SpringMVC通用后台管理系统源码
整体的SSM后台管理框架功能已经初具雏形,前端界面风格采用了结构简单、 性能优良、页面美观大的Layui页面展示框架 数据库支持了SQLserver,只需修改配置文件即可实现数据库之间的转换。 系统工具中加入了定时任务管理和cron生成器,轻松实现系统调度问…...
深度解析Dubbo的基本应用与高级应用:负载均衡、服务超时、集群容错、服务降级、本地存根、本地伪装、参数回调等关键技术详解
负载均衡 官网地址: http://dubbo.apache.org/zh/docs/v2.7/user/examples/loadbalance/ 如果在消费端和服务端都配置了负载均衡策略, 以消费端为准。 这其中比较难理解的就是最少活跃调用数是如何进行统计的? 讲道理, 最少活跃数…...
备战2024美赛数学建模,文末获取历史优秀论文
总说(历年美赛优秀论文可获取) 数模的题型千变万化,我今天想讲的主要是一些「画图」、「建模」、「写作」和「论文结构」的思路,这些往往是美赛阅卷官最看重的点,突破了这些点,才能真正让你的美赛论文更上…...
Java加密解密大全(MD5、RSA)
目录 一、MD5加密二、RSA加解密(公加私解,私加公解)三、RSA私钥加密四、RSA私钥加密PKCS1Padding模式 一、MD5加密 密文形式:5eb63bbbe01eeed093cb22bb8f5acdc3 import java.math.BigInteger; import java.security.MessageDigest; import java.security…...
C语言程序设计考试掌握这些题妥妥拿绩点(写给即将C语言考试的小猿猴们)
目录 开篇说两句1. 水仙花数题目描述分析代码示例 2. 斐波那契数列题目描述分析代码示例 3. 猴子吃桃问题题目描述分析代码示例 4. 物体自由落地题目描述分析代码示例 5. 矩阵对角线元素之和题目描述分析代码示例 6. 求素数题目描述分析代码示例 7. 最大公约数和最小公倍数题目…...
编译ZLMediaKit(win10+msvc2019_x64)
前言 因工作需要,需要ZLMediaKit,为方便抓包分析,最好在windows系统上测试,但使用自己编译的第三方库一直出问题,无法编译通过。本文档记录下win10上的编译过程,供有需要的小伙伴使用 一、需要安装的软件…...
JS-基础语法(一)
JavaScript简单介绍 变量 常量 数据类型 类型转换 案例 1.JavaScript简单介绍 JavaScript 是什么? 是一种运行在客户端(浏览器)的编程语言,可以实现人机交互效果。 JS的作用 JavaScript的组成 JSECMAScript( 基础语法 )…...
18款Visual Studio实用插件(更新)
前言 俗话说的好工欲善其事必先利其器,安装一些Visual Studio实用插件对自己日常的开发和工作效率能够大大的提升,避免996从选一款好的IDE实用插件开始。以下是我认为比较实用的Visual Studio插件希望对大家有用,大家有更好的插件推荐可在文…...
三、java线性表(顺序表、链表、栈、队列)
java线性表 三、线性表1.1 顺序表1.2 链表1.2.1 单向链表(Singly Linked List)1.2.2 双向链表(Doubly Linked List) 1.3 LinkedList VS ArrayList1.3.7 使用 LinkedList 的场景 1.4 栈1.5 队列 三、线性表 线性表是一种经典的数据…...
PiflowX-MysqlCdc组件
MysqlCdc组件 组件说明 MySQL CDC连接器允许从MySQL数据库读取快照数据和增量数据。 计算引擎 flink 组件分组 cdc 端口 Inport:默认端口 outport:默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子hostnameHostname“”无是MySQL…...
2023春季李宏毅机器学习笔记 03 :机器如何生成文句
资料 课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid2014800 一、大语言模型的两种…...
dplayer播放hls格式视频并自动开始播放
监控视频流为hls格式,需要打开或刷新页面自动开始播放,需要安装dplayer和hls.js插件,插件直接npm装就行,上代码 import DPlayer from dplayer import Hls from hls.js //jquery是用来注册点击事件,实现自动开始播放 i…...
使用Vivado Design Suite平台板、将IP目录与平台板流一起使用
使用Vivado Design Suite平台板流 Vivado设计套件允许您使用AMD目标设计平台板(TDP)创建项目,或者已经添加到板库的用户指定板。当您选择特定板,Vivado设计工具显示有关板的信息,并启用其他设计器作为IP定制的一部分以…...
PACS医学影像报告管理系统源码带CT三维后处理技术
PACS从各种医学影像检查设备中获取、存储、处理影像数据,传输到体检信息系统中,生成图文并茂的体检报告,满足体检中心高水准、高效率影像处理的需要。 自主知识产权:拥有完整知识产权,能够同其他模块无缝对接 国际标准…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
