当前位置: 首页 > news >正文

建设网站的法律可行性/培训心得简短50字

建设网站的法律可行性,培训心得简短50字,保利建设开发总公司网站,seo公司怎样个人主页:元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题 http://t.csdnimg.cn/yUl2I 【C】 ​​​​​​http://t.csdnimg.cn/6AbpV 数据结构与算法 ​​​http://t.csdnimg.cn/hKh2l 前言:这个专栏主要讲述动…

个人主页:元清加油_【C++】,【C语言】,【数据结构与算法】-CSDN博客

个人专栏

力扣递归算法题

 http://t.csdnimg.cn/yUl2I

【C++】    

​​​​​​http://t.csdnimg.cn/6AbpV

数据结构与算法

 ​​​http://t.csdnimg.cn/hKh2l


前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的  

我讲述题目会把讲解部分分为3个部分:
1、题目解析

2、算法原理思路讲解

3、代码实现


地下城游戏

题目链接:地下城游戏

题目

恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。

返回确保骑士能够拯救到公主所需的最低初始健康点数。

注意:任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

示例 1:

输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
输出:7
解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。

示例 2:

输入:dungeon = [[0]]
输出:1

提示:

  • m == dungeon.length
  • n == dungeon[i].length
  • 1 <= m, n <= 200
  • -1000 <= dungeon[i][j] <= 1000

解法

算法原理讲解

我们这题使用动态规划,我们做这类题目可以分为以下五个步骤

  1. 状态显示
  2. 状态转移方程
  3. 初始化(防止填表时不越界)
  4. 填表顺序
  5. 返回值
  • 状态显示
  1. 这道题如果我们和以前的题目一样定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。 那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后⾯的路径的影响。也就是从上往下的状态转移不能很好地解决问题。
  2. 这个时候我们要换⼀种状态表示:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。 综上所述,定义状态表示为: dp[i][j] 表示:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。
  • 状态转移方程
对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择(为了⽅便理解,设 dp[ i ][ j ] 的最终答案是 x
  • 走到右边,然后⾛向终点 。那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要大于等于右边位 置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。 通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最小值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j]
  • ⾛到下边,然后⾛向终点。那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。 通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最小值,因此这种情况下的 x = dp[i + 1][j] -dungeon[i][j]
综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:
dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]
但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j] 如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取⼀个最⼤值即可: dp[i][j] = max(1, dp[i][j])。
  • 初始化(防止填表时不越界)
dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让 dp[m][n - 1] = dp[m - 1][n] = 1 即可。
  • 填表顺序
根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。
  • 返回值
根据「状态表⽰」,我们需要返回 dp[0][0] 的值。

代码实现

class Solution {
public:int calculateMinimumHP(vector<vector<int>>& dungeon) {int m = dungeon.size();int n = dungeon[0].size();vector<vector<int>> dp(m+1, vector<int>(n+1,INT_MAX));// 初始化dp[m][n-1] = dp[m-1][n] = 1;// 填表for (int i = m - 1; i >= 0; i--){for (int j = n - 1; j >=0; j--){dp[i][j] = min(dp[i+1][j],dp[i][j+1]) - dungeon[i][j];dp[i][j] = max(1,dp[i][j]);     // 防止正数太大}}return dp[0][0];}
};

相关文章:

LeetCode刷题--- 地下城游戏

个人主页&#xff1a;元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题 http://t.csdnimg.cn/yUl2I 【C】 ​​​​​​http://t.csdnimg.cn/6AbpV 数据结构与算法 ​​​http://t.csdnimg.cn/hKh2l 前言&#xff1a;这个专栏主要讲述动…...

【sklearn练习】鸢尾花

一、 import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier 第二行&#xff1a;导入datasets数据集 第三行&#xff1a;train_test_split 的作用是将数据集随机分配…...

STM32的USB设备库

适用范围&#xff1a;“on the STM32F10xxx,STM32F37xxx, STM32F30xxx and STM32L15xxx devices.” STM32_USB-FS-Device_Lib_V4.0.0.rar&#xff08;访问密码&#xff1a;1666&#xff09;https://url48.ctfile.com/f/33868548-1000799917-a5409d?p1666 适用范围&#xff1…...

整数对最小和(100%用例)C卷 (JavaPythonC++Node.jsC语言)

给定两个整数数组 array1 、 array2 ,数组元素按升序排列。假设从 array1 、 array2 中分别取出一个元素可构成一对元素,现在需要取出 k 对元素,并对取出的所有元素求和,计算和的最小值 注意:两对元素如果对应于 array1 、 array2 中的两个下标均相同,则视为同一对元素。…...

QT笔记 - 加载带有提升为自定义部件类的“.ui“文件 - 重写QUiLoader::createWidget()函数

说明 如果ui设计中有提升过小部件&#xff0c;则无法直接使用QUiLoader加载。完成加载需要重新实现UiLoader::createWidget()函数。 函数 virtual QWidget * QUiLoader::createWidget(const QString & className, QWidget * parent Q_NULLPTR, const QString & name…...

开启Android学习之旅-2-架构组件实现数据列表及添加(kotlin)

Android Jetpack 体验-官方codelab 1. 实现功能 使用 Jetpack 架构组件 Room、ViewModel 和 LiveData 设计应用&#xff1b;从sqlite获取、保存、删除数据&#xff1b;sqlite数据预填充功能&#xff1b;使用 RecyclerView 展示数据列表&#xff1b; 2. 使用架构组件 架构组…...

leetcode 动态规划(最后一块石头的重量II、目标和、一和零)

1049.最后一块石头的重量II 力扣题目链接(opens new window) 题目难度&#xff1a;中等 有一堆石头&#xff0c;每块石头的重量都是正整数。 每一回合&#xff0c;从中选出任意两块石头&#xff0c;然后将它们一起粉碎。假设石头的重量分别为 x 和 y&#xff0c;且 x < …...

JavaWeb-HTTP

一、概念 HTTP&#xff1a;HyperText Transfer Protocol&#xff0c;超文本传输协议。读者应该不是第一次接触这个名词&#xff0c;但可能仍然不是很理解&#xff0c;笔者将逐一解释。 HyperText&#xff08;超文本&#xff09;&#xff1a;根据维斯百科&#xff0c;Hypertex…...

算法训练营第四十二天|动态规划:01背包理论基础 416. 分割等和子集

目录 动态规划&#xff1a;01背包理论基础416. 分割等和子集 动态规划&#xff1a;01背包理论基础 文章链接&#xff1a;代码随想录 题目链接&#xff1a;卡码网&#xff1a;46. 携带研究材料 01背包问题 二维数组解法&#xff1a; #include <bits/stdc.h> using namesp…...

前端 JS篇快问快答

问题&#xff1a;常见的特殊字符&#xff08;不包括空格\s&#xff09; 正则表达式为&#xff1a; 回答&#xff1a;/[!#$%^&*()\-_{};:",.<>/?[\]~|]/ &#xff08;加粗的紫色字符都是特殊字符&#xff09; 问题&#xff1a;常见的特殊字符&#xff08;包括…...

vue/vue3/js来动态修改我们的界面浏览器上面的文字和图标

前言&#xff1a; 整理vue/vue3项目中修改界面浏览器上面的文字和图标的方法。 效果&#xff1a; vue2/vue3: 默认修改 public/index.html index.html <!DOCTYPE html> <html lang"en"><head><link rel"icon" type"image/sv…...

MobaXterm SSH 免密登录配置

文章目录 1.简介2.SSH 免密登录配置第一步&#xff1a;点击 Session第二步&#xff1a;选择 SSH第三步&#xff1a;输入服务器地址与用户名第四步&#xff1a;设置会话名称第五步&#xff1a;点击 OK 并输入密码 3.密码管理4.小结参考文献 1.简介 MobaXterm 是一个功能强大的终…...

霍兰德职业兴趣测试:找到与你性格匹配的职业

霍兰德职业兴趣理论 约翰霍兰德&#xff08;John Holland&#xff09;是美国约翰霍普金斯大学心理学教授&#xff0c;美国著名的职业指导专家。他于1959年提出了具有广泛社会影响的职业兴趣理论。认为人的人格类型、兴趣与职业密切相关&#xff0c;兴趣是人们活动的巨大动力&a…...

LVGL学习笔记 显示和隐藏 对象的属性标志位 配置

在显示GUI的过程中需要对某些对象进行临时隐藏或临时显示,因此需要对该对象的FLAG进行配置就可以实现对象的显示和隐藏了. 调用如下接口可以实现: lv_obj_add_flag(user_obj, LV_OBJ_FLAG_HIDDEN);//隐藏对象lv_obj_clear_flag(user_obj, LV_OBJ_FLAG_HIDDEN);//取消隐藏实现的…...

cuda上使用remap函数

在使用opencv中的remap函数时&#xff0c;发现运行时间太长了&#xff0c;如果使用视频流进行重映射时根本不能实时&#xff0c;因此只能加速 1.使用opencv里的cv::cuda::remap函数 cv::cuda::remap函数头文件是#include <opencv2/cudawarping.hpp>&#xff0c;编译ope…...

【JaveWeb教程】(18) MySQL数据库开发之 MySQL数据库设计-DDL 如何查询、创建、使用、删除数据库数据表 详细代码示例讲解

目录 2. 数据库设计-DDL2.1 项目开发流程2.2 数据库操作2.2.1 查询数据库2.2.2 创建数据库2.2.3 使用数据库2.2.4 删除数据库 2.3 图形化工具2.3.1 介绍2.3.2 安装2.3.3 使用2.2.3.1 连接数据库2.2.3.2 操作数据库 2.3 表操作2.3.1 创建2.3.1.1 语法2.3.1.2 约束2.3.1.3 数据类…...

ElasticSearch学习笔记-SpringBoot整合Elasticsearch7

项目最近需要接入Elasticsearch7&#xff0c;顺带记录下笔记。 Elasticsearch依赖包版本 <properties><elasticsearch.version>7.9.3</elasticsearch.version><elasticsearch.rest.version>7.9.3</elasticsearch.rest.version> </propertie…...

[足式机器人]Part2 Dr. CAN学习笔记 - Ch02动态系统建模与分析

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记 - Ch02动态系统建模与分析 1. 课程介绍2. 电路系统建模、基尔霍夫定律3. 流体系统建模4. 拉普拉斯变换&#xff08;Laplace&#xff09;传递函数、微分方程4.1 Laplace Transform 拉式变换4.2 收…...

【一周年创作总结】人生是远方的无尽旷野呀

那一眼瞥见的伟大的灵魂&#xff0c;却似模糊的你和我 文章目录 &#x1f4d2;各个阶段的experience&#x1f50e;大一寒假&#x1f50e;大一下学期&#x1f50e;大一暑假&#x1f50e;大二上学期&#xff08;现在&#xff09; &#x1f354;相遇CSDN&#x1f6f8;自媒体&#…...

金融帝国实验室(Capitalism Lab)V10版本游戏平衡性优化与改进

即将推出的V10版本中的各种游戏平衡性优化与改进&#xff1a; ————————————— 一、当玩家被提议收购一家即将破产的公司时&#xff0c;显示商业秘密。 当一家公司濒临破产&#xff0c;玩家被提议收购该公司时&#xff0c;如果玩家有兴趣评估该公司&#xff0c;则无…...

[SpringBoot]接口的多实现:选择性注入SpringBoot接口的实现类

最近在项目中遇到两种情况&#xff0c;准备写个博客记录一下。 情况说明&#xff1a;Service层一个接口是否可以存在多个具体实现&#xff0c;此时应该如何调用Service&#xff08;的具体实现&#xff09;&#xff1f; 其实之前的项目中也遇到过这种情况&#xff0c;只不过我采…...

北京大学 wlw机器学习2022春季期末试题分析

北京大学 wlw机器学习2022春季期末试题分析 前言新的开始第一题第二题第三题 前言 你好&#xff01; 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章&#xff0c;了解一下Markdown的基本语法知识。 新的开始 第…...

前端文件下载方法(包含get和post)

export const downloadFileWithIframe (url, name) > {const iframe document.createElement(iframe);iframe.style.display none; // 防止影响页面iframe.style.height 0; // 防止影响页面iframe.name name;iframe.src url;document.body.appendChild(iframe); // 这…...

高性能、可扩展、支持二次开发的企业电子招标采购系统源码

在数字化时代&#xff0c;企业需要借助先进的数字化技术来提高工程管理效率和质量。招投标管理系统作为企业内部业务项目管理的重要应用平台&#xff0c;涵盖了门户管理、立项管理、采购项目管理、采购公告管理、考核管理、报表管理、评审管理、企业管理、采购管理和系统管理等…...

2645. 构造有效字符串的最少插入数

Problem: 2645. 构造有效字符串的最少插入数 文章目录 解题思路解决方法复杂度分析代码实现 解题思路 解决此问题需要确定如何以最小的插入次数构造一个有效的字符串。首先&#xff0c;我们需要确定开头的差距&#xff0c;然后决定中间的补足&#xff0c;最后决定末尾的差距。…...

C#,快速排序算法(Quick Sort)的非递归实现与数据可视化

排序算法是编程的基础。 常见的四种排序算法是&#xff1a;简单选择排序、冒泡排序、插入排序和快速排序。其中的快速排序的优势明显&#xff0c;一般使用递归方式实现&#xff0c;但遇到数据量大的情况则无法适用。实际工程中一般使用“非递归”方式实现。 快速排序(Quick Sor…...

【操作系统xv6】学习记录2 -RISC-V Architecture

说明&#xff1a;看完这节&#xff0c;不会让你称为汇编程序员&#xff0c;知识操作系统的前置。 ref&#xff1a;https://binhack.readthedocs.io/zh/latest/assembly/mips.html https://www.bilibili.com/video/BV1w94y1a7i8/?p7 MIPS MIPS的意思是 “无内部互锁流水级的微…...

C++力扣题目111--二叉树的最小深度

力扣题目链接(opens new window) 给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明: 叶子节点是指没有子节点的节点。 示例: 给定二叉树 [3,9,20,null,null,15,7], 返回它的最小深度 2 思路 看完了这篇104.二…...

【图像拼接】源码精读:Adaptive As-Natural-As-Possible Image Stitching(AANAP/ANAP)

第一次来请先看这篇文章:【图像拼接(Image Stitching)】关于【图像拼接论文源码精读】专栏的相关说明,包含专栏内文章结构说明、源码阅读顺序、培养代码能力、如何创新等(不定期更新) 【图像拼接论文源码精读】专栏文章目录 【源码精读】As-Projective-As-Possible Imag…...

解决docker run报错:Error response from daemon: No command specified.

将docker镜像export/import之后&#xff0c;对新的镜像执行docker run时报错&#xff1a; docker: Error response from daemon: No command specified. 解决方法&#xff1a; 方案1&#xff1a; 查看容器的command&#xff1a; docker ps --no-trunc 在docker run命令上增加…...