当前位置: 首页 > news >正文

Python中Opencv和PIL.Image读取图片的差异对比

近日,在进行深度学习进行推理的时候,发现不管怎么样都得不出正确的结果,再仔细和正确的代码进行对比了后发现原来是Python中不同的库读取的图片数组是有差异的。

image = np.array(Image.open(image_file).convert('RGB'))
image = cv2.imread(image_file)

上面第一行代码就是导致错误出现的原因,我把代码改成第二行代码模型就能够正确的推理了。(巨坑),以后谨记,在使用Python读取图片的时候最好使用OpenCV来读取。

下面给出两种方式读取图片具体的差异,内容来自:Opencv和PIL.Image读取图片的区别_陆杰呀的博客-CSDN博客。

imshow

1、Opopencv  : cv2.imshow()采用BGR模式,通过cv2.imread()读取;
2、matplotlib.pyplot  : plt.imshow() 采用RGB模式,   通过plt.imread()读取;
3、PIL.Image :  img.show()  采用RGB模式, 通过Image.open()读取;img对图片对象
备注:通过cv2.VideoCapture方法来读取video的frame,得到的frame的通道顺序是BGR的!!!

下面一组图依次是:img、plt.imshow(cv_img)、Img_img.show()、plt.imshow(plt_img) 

 

 cv2(BGR)

# img为BGR通道
img = cv2.imread(img_path, mode) # mode = [1, 0, -1]依次表示彩色、灰度、彩色+alpha, 默认为1;
cv2.imshow('test', img)
cv2.waitKey(0) # 保持图形界面,直到你在终端输入任意字符
cv2.destroyAllWindows()

PIL.Image(RGB)

img = Image.open(img_path)
img.show()

PIL.Image转Opencv

cv2_img = cv2.cvtColor(numpy.asarray(Img_img),cv2.COLOR_RGB2BGR)

Opencv转PIL.Image

pil_img = Image.fromarray(cv2.cvtColor(cv_img,cv2.COLOR_BGR2RGB))


 

 

相关文章:

Python中Opencv和PIL.Image读取图片的差异对比

近日,在进行深度学习进行推理的时候,发现不管怎么样都得不出正确的结果,再仔细和正确的代码进行对比了后发现原来是Python中不同的库读取的图片数组是有差异的。 image np.array(Image.open(image_file).convert(RGB)) image cv2.imread(…...

win10 WSL2 使用Ubuntu配置与安装教程

Win10 22H2ubuntu 22.04ROS2 文章目录一、什么是WSL2二、Win10 系统配置2.1 更新Windows版本2.2 Win10系统启用两个功能2.3 Win10开启BIOS/CPU开启虚拟化(VT)(很关键)2.4 下载并安装wsl_update_x64.msi2.5 PowerShell安装组件三、PowerShell安装Ubuntu3.…...

LeetCode每日一题(28. Find the Index of the First Occurrence in a String)

Given two strings needle and haystack, return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack. Example 1: Input: haystack “sadbutsad”, needle “sad” Output: 0 Explanation: “sad” occurs at index 0 and…...

Android 圆弧形 SeekBar

效果预览package com.gcssloop.widget;import android.annotation.SuppressLint;import android.content.Context;import android.content.res.TypedArray;import android.graphics.Canvas;import android.graphics.Color;import android.graphics.Matrix;import android.graph…...

java 字典

java 字典 数据结构总览 Map Map 描述的是一种映射关系,一个 key 对应一个 value,可以添加,删除,修改和获取 key/value,util 提供了多种 Map HashMap: hash 表实现的 map,插入删除查找性能都是 O(1)&…...

【企业服务器LNMP环境搭建】mysql安装

MySQL安装步骤: 1、相关说明 1.1、编译参数的说明 -DCMAKE_INSTALL_PREFIX安装到的软件目录-DMYSQL_DATADIR数据文件存储的路径-DSYSCONFDIR配置文件路径 (my.cnf)-DENABLED_LOCAL_INFILE1使用localmysql客户端的配置-DWITH_PARTITION_STORAGE_ENGINE使mysql支持…...

vue自定义指令以及angular自定义指令(以禁止输入空格为例)

哈喽,小伙伴们,大家好啊,最近要实现一个vue自定义指令,就是让input输入框禁止输入空格建立一个directives的指令文件,里面专门用来建立各个指令的官方文档:自定义指令 | Vue.js (vuejs.org)我们都知道vue中…...

异常 复习

异常复习 异常(广义):泛指程序中一切不正常的情况 错误:例如内存不够用,程序是无法解决的 异常(狭义):程序在运行中出现问题,但是可以通过异常处理机制处理,程序可以继续向后执行 异常体系 Throwable类有两个直接子类:Excepti…...

K8s:开源安全平台 kubescape 实现 Pod 的安全合规检查/镜像漏洞扫描

写在前面 生产环境中的 k8s 集群安全不可忽略,即使是内网环境容器化的应用部署虽然本质上没有变化,始终是机器上的一个进程但是提高了安全问题的处理的复杂性分享一个开源的 k8s 集群安全合规检查/漏洞扫描 工具 kubescape博文内容涉及: kube…...

C#中,FTP同步或异步读取大量文件

一次快速读取上万个文件中的内容 在C#中,可以使用FTP客户端类(如FtpWebRequest)来连接FTP服务器并进行文件操作。一次快速读取上万个文件中的内容,可以采用多线程的方式并发读取文件。 以下是一个示例代码,用于读取FT…...

STM32单片机的FLASH和RAM

STM32内置有Flash和RAM(而RAM分为SRAM和DRAM,STM32内为SRAM),硬件上他们是不同的设备存储器、属于两个器件,但这两个存储器的寄存器输入输出端口被组织在同一个虚拟线性地址空间内。 MDK预处理、编译、汇编、链接后编…...

Java 二叉树的遍历

二叉树的遍历(traversing binary tree)是指从根结点出发,按照某种次序依次访问二叉树中所有的结点,使得每个结点被访问依次且仅被访问一次。前序遍历(根 左 右)先访问根结点,然后前序遍历左子树…...

实习日记-C#

数据类型 字符串常量 string a "hello, world"; // hello, world string b "hello, world"; // hello, world string c "hello \t world"; // hello world string d "hello \t wor…...

Tech Lead如何引导团队成员解决问题?

作为一个开发团队的Tech Lead,当团队成员向你寻求帮助时,你有没有说过下面这些话? 你别管了,我来解决这个问题你只要。。。就行了你先做其他的吧,我研究一下,然后告诉你怎么做 当我们说这些话时&#xff…...

07--组件

一、小程序组件分类微信团队为开发者提供了一系列基础组件,开发者可以通过组合这些基础组件进行快速开发。小程序中的组件也是非常丰富的,开发者可以基于组件快速搭建出漂亮的页面结构。小程序中的组件其实相当于网页中的HTML标签,只不过标签…...

怎么做好一个完整的项目复盘

复盘,是运营必不可少的能力,小到一次买菜的经历,大到百亿千亿的投资项目,都可以通过复盘来总结规律、提升水平。简单说来,复盘可以达到的效果有两条:优化弱项,强化强项明确自己的价值&#xff0…...

浅谈一下mysql8.0与5.7的字符集

修改字符集 修改步骤 在MySQL8.0版本之前,默认字符集为1atin1,utf8字符集指向的是utf8mb3。网站开发人员在数据库设计的时候往往会将编码修改为ut8字符集。如果遗忘修改默认的编码,就会出现乱码的问题。从MySQL8.0开始,数据库的默认编码将改…...

paddle推理部署(cpu)

我没按照官方文档去做,吐槽一下,官方文档有点混乱。。一、概述总结起来,就是用c示例代码,用一个模型做推理。二、示例代码下载https://www.paddlepaddle.org.cn/paddle/paddleinferencehttps://github.com/PaddlePaddle/Paddle-In…...

想开发IM集群?先搞懂什么是RPC!

即时通讯网官方技术群和社区里,经常有开发者在纠结怎么开发IM集群,虽然真正的使用人数,可能用个人电脑单机都能支撑。你也许会说,明明不需要用到IM集群,干吗要自找麻烦?答曰:“老板说这个得有&a…...

案例13-前端对localStorage的使用分析

一:背景介绍 前端在调用后端接口获取某一个人的评论次数、获赞次数、回复次数。调用之后判断后端返回过来的值。如果返回回来的值是0的话,从缓存中获取对应的值,如果从缓存中获取的评论次数为空那么其他两个的次数也为0。 二:思路…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...