当前位置: 首页 > news >正文

二分查找与搜索树的高频问题(算法村第九关白银挑战)

基于二分查找的拓展问题

山峰数组的封顶索引

852. 山脉数组的峰顶索引 - 力扣(LeetCode)

给你由整数组成的山脉数组 arr ,返回满足 arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1] 的下标 i

你必须设计并实现时间复杂度为 O(log(n)) 的解决方案。

提示:

  • 3 <= arr.length <= 105
  • 0 <= arr[i] <= 106
  • 题目数据保证 arr 是一个山脉数组
二分查找
public int peakIndexInMountainArray(int[] arr)
{int low = 1;    //mid - 1 >= 0int high = arr.length - 2;  // mid + 1 <= arr.length - 1while (low <= high){int mid = low + (high - low >> 1);//找到山峰if(arr[mid] > arr[mid - 1] && arr[mid] > arr[mid + 1])return mid;//山峰左侧(递增)else if(arr[mid] > arr[mid - 1] && arr[mid] < arr[mid + 1])low = mid + 1;//山峰右侧(递减)elsehigh = mid - 1;}return -1;
}

旋转排序数组的最小值

无重复元素

153. 寻找旋转排序数组中的最小值 - 力扣(LeetCode)

已知一个长度为 n 的数组,预先按照升序排列,经由 1n旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

  • 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
  • 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]]

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

二分查找

在这里插入图片描述

在这里插入图片描述

nums [pivot] >= nums [high] 时,移动 low

在这里插入图片描述

public int findMin(int[] nums){int left = 0;int right = nums.length - 1;while (left < right)  // left == right 时找到最低点(最小值){int mid = left + (right - left >> 1);if(nums[mid] < nums[right])right = mid; //让 right 去触碰最低点(因为无法确定mid是不是最低点下标,故不能跳过它。如果是比较数值,那可以直接跳过,即 right = mid + 1)elseleft = mid + 1;  // left 迫近最低点,与 right 汇合}return nums[left];   //left == right == mid}
有重复元素

154. 寻找旋转排序数组中的最小值 II - 力扣(LeetCode)

二分查找

重复元素要一个个排除

public int findMin(int[] nums){int left = 0;int right = nums.length - 1;while (left < right)  // left == right 时找到最低点(最小值){int mid = left + (right - left >> 1);if(nums[mid] < nums[right])right = mid; //让 right 去触碰最低点else if(nums[mid] > nums[right])left = mid + 1;  // left 迫近最低点,与 right 汇合elseright--; //处理重复元素要一步一步来}return nums[left];   //left == right == mid}

缺失的数字

剑指 offer :一个长度为 n - 1 的递增排序数组中的所有数字都是唯一的,每个数字的范围都是 [0,n-1] 。在范围 0~n-1 内的 n 个数字中有且只有一个数字不在该数组中,请找出这个数字。

LCR 173. 点名 - 力扣(LeetCode)

某班级 n 位同学的学号为 0 ~ n-1。点名结果记录于升序数组 records。假定仅有一位同学缺席,请返回他的学号。

示例 1:

输入: records = [0,1,2,3,5]
输出: 4

示例 2:

输入: records = [0, 1, 2, 3, 4, 5, 6, 8]
输出: 7

提示:

1 <= records.length <= 10000
二分查找
public static int missingNumber(int[] nums)
{int left = 0;int right = nums.length - 1;while (left <= right){int mid = left + (right - left >> 1);if (nums[mid] == mid)left = mid + 1; //让 left 去触碰缺失的元素,碰到后就不动了,交给 right 结束循环elseright = mid - 1;}return left;
}public static void main(String[] args)
{// n = 3 个数字, 数组长度(元素个数)为 n - 1 = 2, 元素范围 [0,2]int[] nums = {0, 1};System.out.println(missingNumber(nums)); // 输出 2// n = 7 个数字, 数组长度(元素个数)为 n - 1 = 6, 元素范围 [0,6]int[] nums2 = {0, 1, 2, 3, 5, 6};System.out.println(missingNumber(nums2)); // 输出 4
}

x 的平方根

LCR 072. x 的平方根 - 力扣(LeetCode)

给定一个非负整数 x ,计算并返回 x 的平方根,即实现 int sqrt(int x) 函数。

正数的平方根有两个,只输出其中的正数平方根。

如果平方根不是整数,输出只保留整数的部分,小数部分将被舍去。

示例 1:

输入: x = 4
输出: 2

示例 2:

输入: x = 8
输出: 2
解释: 8 的平方根是 2.82842...,由于小数部分将被舍去,所以返回 2

提示:

  • 0 <= x <= 231 - 1
二分查找实现
public int mySqrt(int x)
{int left = 1;int right = x;int ans = 0;while (left <= right){int mid = left + (right - left >> 1);if(x / mid >= mid)  //x >= mid²{ans = mid;  //向下取整逼近答案left = mid + 1;}elseright = mid - 1;}return ans;
}

更多题目

34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode)

875. 爱吃香蕉的珂珂 - 力扣(LeetCode)

29. 两数相除 - 力扣(LeetCode)

中序遍历与搜索树

简单来说,如果一棵二叉树是搜索树,则中序遍历序列是一个递增序列。

比较规范的定义是:

  • 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
  • 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;

它的左、右子树也分别为二叉排序树。

下面两棵树的中序序列分别是{3,6,9,10,14,16,19},{3,6,9,10},因此都是搜索树。

在这里插入图片描述

二叉搜索树中的搜索

700. 二叉搜索树中的搜索 - 力扣(LeetCode)

给定二叉搜索树(BST)的根节点 root 和一个整数值 val

你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null

示例 1:

img
输入:root = [4,2,7,1,3], val = 2
输出:[2,1,3]

示例 2:

img
输入:root = [4,2,7,1,3], val = 5
输出:[]
递归
public TreeNode searchBST(TreeNode root, int val)
{if (root == null || root.val == val)return root;if (val < root.val) //进入左子树搜索return searchBST(root.left, val);else    //否则进入右子树搜索return searchBST(root.right, val);
}
迭代
public TreeNode searchBST(TreeNode root, int val)
{while (root != null){if (root.val == val)break;else if (val < root.val)root = root.left;elseroot = root.right;}return root;
}

验证二叉搜索树

98. 验证二叉搜索树 - 力扣(LeetCode)

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左子树只包含 小于 当前节点的数。
  • 节点的右子树只包含 大于 当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

示例 1:

img
输入:root = [2,1,3]
输出:true

示例 2:

img
输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4

提示:

  • 树中节点数目范围在[1, 104]
  • -231 <= Node.val <= 231 - 1
中序遍历+实时检查

二叉搜索树「中序遍历」序列是升序的,所以我们在中序遍历时,实时检查当前节点的值是否大于前一个节点的值即可。

long pre = Long.MIN_VALUE;
public boolean isValidBST(TreeNode root)
{if (root == null)return true;//检查左子树是否为二叉搜索树if(!isValidBST(root.left))  //等待左子树的返回结果。如果左子树下某个元素不满足要求,则退出所有递归return false;//检查当前节点是否大于等于前一个节点if (root.val <= pre)return false;pre = root.val;//检查右子树是否为二叉搜索树return isValidBST(root.right);  //等待右子树的返回结果
}
中序遍历+是否升序
public boolean isValidBST(TreeNode root)
{ArrayList<Integer> res = new ArrayList<>();inOrder(root,res);for (int i = 1; i < res.size(); i++)if (res.get(i - 1) >= res.get(i))return false;return true;
}public void inOrder(TreeNode root, ArrayList<Integer> res)
{if (root == null)return;inOrder(root.left, res);res.add(root.val);inOrder(root.right, res);
}

更多题目

530. 二叉搜索树的最小绝对差 - 力扣(LeetCode)

501. 二叉搜索树中的众数 - 力扣(LeetCode)

相关文章:

二分查找与搜索树的高频问题(算法村第九关白银挑战)

基于二分查找的拓展问题 山峰数组的封顶索引 852. 山脉数组的峰顶索引 - 力扣&#xff08;LeetCode&#xff09; 给你由整数组成的山脉数组 arr &#xff0c;返回满足 arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i 1] > ... > arr[arr.length - 1…...

Python爬虫快速入门

Python 爬虫Sutdy 1.基本类库 request(请求) 引入 from urllib import request定义url路径 url"http://www.baidu.com"进行请求,返回一个响应对象response responserequest.urlopen(url)读取响应体read()以字节形式打印网页源码 response.read()转码 编码 文本–by…...

部署MinIO

一、安装部署MINIO 1.1 下载 wget https://dl.min.io/server/minio/release/linux-arm64/minio chmod x minio mv minio /usr/local/bin/ # 控制台启动可参考如下命令, 守护进程启动请看下一个代码块 # ./minio server /data /data --console-address ":9001"1.2 配…...

RK3566环境搭建

环境&#xff1a;vmware16&#xff0c;ubuntu 18.04 安装依赖库&#xff1a; sudo apt-get install repo git ssh make gcc libssl-dev liblz4-tool expect g patchelf chrpath gawk texinfo chrpath diffstat binfmt-support qemu-user-static live-build bison flex fakero…...

精确掌控并发:滑动时间窗口算法在分布式环境下并发流量控制的设计与实现

这是《百图解码支付系统设计与实现》专栏系列文章中的第&#xff08;15&#xff09;篇&#xff0c;也是流量控制系列的第&#xff08;2&#xff09;篇。点击上方关注&#xff0c;深入了解支付系统的方方面面。 上一篇介绍了固定时间窗口算法在支付渠道限流的应用以及使用redis…...

Python展示 RGB立方体的二维切面视图

代码实现 import numpy as np import matplotlib.pyplot as plt# 生成 24-bit 全彩 RGB 立方体 def generate_rgb_cube():# 初始化一个 256x256x256 的三维数组rgb_cube np.zeros((256, 256, 256, 3), dtypenp.uint8)# 填充立方体for r in range(256):for g in range(256):fo…...

03 顺序表

目录 线性表顺序表练习 线性表(Linear list)是n个具有相同特性的数据元素的有限序列。线性表是一种在实际中广泛使用的数据结构&#xff0c;常见的线性表&#xff1a;顺序表、链表、栈、队列、字符串。。。 线性表在逻辑上时线性结构&#xff0c;是连续的一条直线。但在物理结…...

2023年全球软件开发大会(QCon北京站2023)9月:核心内容与学习收获(附大会核心PPT下载)

随着科技的飞速发展&#xff0c;全球软件开发大会&#xff08;QCon&#xff09;作为行业领先的技术盛会&#xff0c;为世界各地的专业人士提供了交流与学习的平台。本次大会汇集了全球的软件开发者、架构师、项目经理等&#xff0c;共同探讨软件开发的最新趋势、技术与实践。本…...

ChatGPT 和 文心一言 的优缺点及需求和使用场景

ChatGPT和文心一言是两种不同的自然语言生成模型&#xff0c;它们有各自的优点和缺点。 ChatGPT&#xff08;Generative Pre-trained Transformer&#xff09;是由OpenAI开发的生成式AI模型&#xff0c;它在庞大的文本数据集上进行了预训练&#xff0c;并可以根据输入生成具有上…...

架构师之超时未支付的订单进行取消操作的几种解决方案

今天给大家上一盘硬菜&#xff0c;并且是支付中非常重要的一个技术解决方案&#xff0c;有这块业务的同学注意自己尝试一把哈&#xff01; 一、需求如下&#xff1a; 生成订单30分钟未支付&#xff0c;自动取消 生成订单60秒后,给用户发短信 对上述的需求&#xff0c;我们给…...

【容器固化】 OS技术之OpenStack容器固化的实现原理及操作

1. Docker简介 要学习容器固化&#xff0c;那么必须要先了解下Docker容器技术。Docker是基于GO语言实现的云开源项目&#xff0c;通过对应用软件的封装、分发、部署、运行等生命周期的管理&#xff0c;达到应用组件级别的“一次封装&#xff0c;到处运行”。这里的应用软件&am…...

设置 SSH 通过密钥登录

我们一般使用 PuTTY 等 SSH 客户端来远程管理 Linux 服务器。但是&#xff0c;一般的密码方式登录&#xff0c;容易有密码被暴力破解的问题。所以&#xff0c;一般我们会将 SSH 的端口设置为默认的 22 以外的端口&#xff0c;或者禁用 root 账户登录。其实&#xff0c;有一个更…...

1.6 面试经典150题 - 买卖股票的最佳时机

买卖股票的最佳时机 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易…...

locust快速入门--使用分布式提高测试压力

背景&#xff1a; 使用默认的locust启动命令进行压测时&#xff0c;尽管已经将用户数设置大比较大&#xff08;400&#xff09;&#xff0c;但是压测的时候RPS一直在100左右。需要增加压测的压力。 问题原因&#xff1a; 如果你是通过命令行启动的或者参考之前文章的启动方式…...

K8s(三)Pod资源——pod亲和性与反亲和性,pod重启策略

目录 pod亲和性与反亲和性 pod亲和性 pod反亲和性 pod状态与重启策略 pod状态 pod重启策略 本文主要介绍了pod资源与pod相关的亲和性&#xff0c;以及pod的重启策略 pod亲和性与反亲和性 pod亲和性&#xff08;podAffinity&#xff09;有两种 1.podaffinity&#xff0c;…...

免费的域名要不要?

前言 eu.org的免费域名相比于其他免费域名注册服务&#xff0c;eu.org的域名后缀更加独特。同时&#xff0c;eu.org的域名注册也比较简单&#xff0c;只需要填写一些基本信息&#xff0c;就可以获得自己的免费域名。 博客地址 免费的域名要不要&#xff1f;-雪饼前言 eu.org…...

高通sm7250与765G芯片是什么关系?(一百八十一)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…...

[Python进阶] Python操作MySQL数据库:pymysql

7.7 操作MySQL数据库&#xff1a;pymysql 7.7.1 准备工作(创建mysql数据库) PHPStudy介绍&#xff1a; phpstudy是一款非常有用的PHP开发工具&#xff0c;旨在帮助开发者更加便捷地进行PHP程序的开发与调试。它提供了一个友好的图形用户界面&#xff0c;使得用户能够方便地进…...

Vue3实现带点击外部关闭对应弹出框(可共用一个变量)

首先&#xff0c;假设您在单文件组件(SFC)中使用了Vue3&#xff0c;并且有两个div元素分别通过v-if和v-else来切换显示一个带有.elpopver类的弹出组件。在这种情况下&#xff0c;每个弹出组件应当拥有独立的状态管理&#xff08;例如&#xff1a;各自的isOpen变量&#xff09;。…...

可视化试题(一)

1. 从可视化系统设计的角度出发&#xff0c;通常需要根据系统将要完成的任务的类型选择交互技术。按照任务类型分类可以将数据可视化中的交互技术分为选择、&#xff08; 重新配置 &#xff09;、重新编码、导航、关联、&#xff08; 过滤 &#xff09;、概览和细节等八…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...