当前位置: 首页 > news >正文

C语言-算法-最小生成树

【模板】最小生成树

题目描述

如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz

输入格式

第一行包含两个整数 N , M N,M N,M,表示该图共有 N N N 个结点和 M M M 条无向边。

接下来 M M M 行每行包含三个整数 X i , Y i , Z i X_i,Y_i,Z_i Xi,Yi,Zi,表示有一条长度为 Z i Z_i Zi 的无向边连接结点 X i , Y i X_i,Y_i Xi,Yi

输出格式

如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz

样例 #1

样例输入 #1

4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3

样例输出 #1

7

提示

数据规模:

对于 20 % 20\% 20% 的数据, N ≤ 5 N\le 5 N5 M ≤ 20 M\le 20 M20

对于 40 % 40\% 40% 的数据, N ≤ 50 N\le 50 N50 M ≤ 2500 M\le 2500 M2500

对于 70 % 70\% 70% 的数据, N ≤ 500 N\le 500 N500 M ≤ 1 0 4 M\le 10^4 M104

对于 100 % 100\% 100% 的数据: 1 ≤ N ≤ 5000 1\le N\le 5000 1N5000 1 ≤ M ≤ 2 × 1 0 5 1\le M\le 2\times 10^5 1M2×105 1 ≤ Z i ≤ 1 0 4 1\le Z_i \le 10^4 1Zi104

样例解释:

所以最小生成树的总边权为 2 + 2 + 3 = 7 2+2+3=7 2+2+3=7

代码

#include <stdio.h>
#include <stdlib.h>
#define MAXN 300000
#define MAXM 300000
typedef struct // 定义边的结构体
{int u, v, w;
}Edge;
Edge edges[MAXM]; // 存储所有的边
int pa[MAXN]; // 并查集数组,用于判断两个节点是否在同一棵树中
int N, M; // N是节点数,M是边数
int cmp(Edge a, Edge b); // 边的比较函数,按照边的权重从小到大排序
int find(int x); // 并查集的查找函数,用于查找节点x的根节点
int kruskal(); // Kruskal算法函数int main(int argc, char *argv[])
{int i;scanf("%d %d", &N, &M); // 读取节点数和边数for (i = 0; i < M; i++){scanf("%d %d %d", &edges[i].u, &edges[i].v, &edges[i].w);}int res = kruskal(); // 调用Kruskal算法计算最小生成树的权重if (res == -1) // 如果图不连通{printf("orz\n");}else{printf("%d\n", res);}return 0;
}int cmp(Edge a, Edge b) // 边的比较函数,按照边的权重从小到大排序
{return (a.w - b.w);
}int find(int x) // 并查集的查找函数,用于查找节点x的根节点
{while (pa[x] != x){x = pa[x];}return x; 
}int kruskal() // Kruskal算法函数
{int i, j;for (i = 0; i < M; i++) // 将所有的边按照从小到大排序{for (j = i + 1; j < M; j++){if (cmp(edges[i], edges[j]) > 0){Edge temp = edges[i];edges[i] = edges[j];edges[j] = temp;}}}for (i = 1; i <= N; i++) // 初始化并查集{pa[i] = i;}int res = 0; // 存储最小生成树的权重int cnt = 0; // 存储当前已经选择的边的数量for (i = 0; i < M; i++) // 遍历所有的边{int u = find(edges[i].u); // 边的一个节点int v = find(edges[i].v); // 边的另一个节点// 如果两个节点不在同一棵树中,说明这条边可以添加到最小生成树中if (u != v){res += edges[i].w; // 更新最小生成树的权重pa[u] = v; // 合并两棵树cnt++; // 更新已经选择的边的数量}}if (cnt != N - 1) // 如果选择边的数量小于N - 1,说明图不连通{return -1;}return res; // 返回最小生成树的权重
}

相关文章:

C语言-算法-最小生成树

【模板】最小生成树 题目描述 如题&#xff0c;给出一个无向图&#xff0c;求出最小生成树&#xff0c;如果该图不连通&#xff0c;则输出 orz。 输入格式 第一行包含两个整数 N , M N,M N,M&#xff0c;表示该图共有 N N N 个结点和 M M M 条无向边。 接下来 M M M 行…...

android 扫描某个包下的所有类

注意事项 如果在用Android Studio开发过程中&#xff0c;如果新增了类&#xff0c;扫描不到。只能把APP卸载了&#xff0c;才能扫描到。 可能是Instance Run 的影响。 后面研究一下这篇文章&#xff0c;看看能不能解决 Android 遍历Apk下的所有类文件 package com.trs.nmip.…...

远程ssh 不通的原因之一

背景&#xff1a;我都想大喊一声&#xff0c;我上网是通的&#xff0c; ping网址是通的&#xff0c;ping www.baidu.com 是通的&#xff0c; 怎么都远程不了&#xff0c;报超时&#xff1b;嘿&#xff0c; 别人远程就能行。我都想挠头了。 目录 1. 先 ping 自己&#xff0c;…...

wamp集成环境部署

Windows下Apache服务器搭建 第一步&#xff1a;下载Windows下的最新ZIP压缩包 推荐下载网址&#xff1a;http://www.apachelounge.com/download/ 为了让Apache服务器发挥更好的性能&#xff0c;请根据自己的系统选择下载&#xff0c;如果不清楚自己的系统是64位还是32位&am…...

使用antd design pro 及后端nodejs express 结合minio进行文件的上传和下载管理

使用Ant Design Pro前端框架结合Node.js Express后端服务以及MinIO作为对象存储&#xff0c;实现文件上传和下载管理的基本步骤如下&#xff1a; 1. 安装所需依赖 在Node.js Express项目中安装minio客户端库&#xff1a; npm install minio --save 在前端项目&#xff08;假…...

Unity常用的优化技巧集锦

Unity性能优化是面试的时候经常被问道的一些内容&#xff0c;今天给大家分享一些常用的Unity的优化技巧和思路&#xff0c;方便大家遇到问题时候参考与学习。 对啦&#xff01;这里有个游戏开发交流小组里面聚集了一帮热爱学习游戏的零基础小白&#xff0c;也有一些正在从事游…...

c++动态调用dll

在C中动态调用DLL&#xff08;动态链接库&#xff09;可以使用Windows API函数。以下是一个简单的示例&#xff0c;演示如何动态加载和调用DLL中的函数&#xff1a; #include <windows.h> #include <iostream>int main() { // 加载DLL HMODULE hModule LoadLibrar…...

使用Python自动化操作手机,自动执行常见任务,例如滑动手势、呼叫、发送短信等等

使用Python自动化操作手机,自动执行常见任务,例如滑动手势、呼叫、发送短信等等。 此自动化脚本将帮助你使用 Python 中的 Android 调试桥 (ADB) 自动化你的智能手机。下面我将展示如何自动执行常见任务,例如滑动手势、呼叫、发送短信等等。 您可以了解有关 ADB 的更多信息,…...

E - Souvenir(图论典型例题)

思路&#xff1a;对于有很多询问的题&#xff0c;一般都是先初始化。我们求出每个点到其他点的最短路径以及相同路径下最大的价值和即可。 代码&#xff1a; #include <bits/stdc.h> #define pb push_back #define a first #define b second using namespace std; type…...

【SpringBoot篇】添加富文本编辑器操作

文章目录 &#x1f354;使用步骤⭐首先我们需要安装富文本编辑器⭐在<script>中引入富文本编辑器⭐富文本图片上传接口⭐初始化富文本编辑器⭐调用 初始化富文本编辑器的方法&#x1f388;新增&#x1f388;编辑&#x1f388;保存 ⭐添加按钮⭐实现viewEditor函数&#x…...

前台vue配置

前台 vue环境 1.傻瓜式安装node: 官网下载&#xff1a;https://nodejs.org/zh-cn/2.安装cnpm: >: npm install -g cnpm --registryhttps://registry.npm.taobao.org3.安装vue最新脚手架: >: cnpm install -g vue/cli注&#xff1a;如果2、3步报错&#xff0c;清除缓…...

牛客周赛 Round 18 解题报告 | 珂学家 | 分类讨论计数 + 状态DP

前言 整体评价 前三题蛮简单的&#xff0c;T4是一个带状态的DP&#xff0c;这题如果用背包思路去解&#xff0c;不知道如何搞&#xff0c;感觉有点头痛。所以最后还是选择状态DP来求解。 欢迎关注 珂朵莉 牛客周赛专栏 珂朵莉 牛客小白月赛专栏 A. 游游的整数翻转 这题最好…...

CentOS防火墙基本操作

CentOS操作系统中的防火墙可以使用firewalld或iptables来进行配置。 firewalld&#xff08;默认&#xff09;&#xff1a; 查看当前状态&#xff1a;systemctl status firewalld 开启/关闭防火墙服务&#xff1a;sudo systemctl start/stop firewalld 设置开机自动启动/不启…...

Shell脚本的编程规范和变量类型

一. 了解编程 1.程序编程风格 面向过程语言 开发的时候 需要一步一步执行 问题规模小&#xff0c;可以步骤化&#xff0c;按部就班处理 以指令为中心&#xff0c;数据服务于指令 C&#xff0c;shell 面向对象语言 开发的时候 将任务当成一个整体 将编程看成是一个…...

C++面试:跳表

目录 跳表介绍 跳表的特点&#xff1a; 跳表的应用场景&#xff1a; C 代码示例&#xff1a; 跳表的特性 跳表示例 总结 跳表&#xff08;Skip List&#xff09;是一种支持快速搜索、插入和删除的数据结构&#xff0c;具有相对简单的实现和较高的查询性能。下面是跳表…...

掌握C++20的革命性特性:Concepts

掌握C20的革命性特性&#xff1a;Concepts C20 的新特性 C20 引入了 Concepts&#xff0c;这是一种用于限制类和函数模板的模板类型和非类型参数的命名要求。Concepts 是作为编译时评估的谓词&#xff0c;用于验证传递给模板的模板参数。Concepts 的主要目的是使模板相关的编…...

win11开机后频繁刷新桌面,任务栏不显示,文件资源管理器explorer报错ntdll.dll

win11 开机后桌面频繁刷新&#xff0c;cpu 暴涨&#xff0c;任务栏不出现。 不知道是安装了什么软件还是系统升级造成的&#xff0c;好长时间不重启电脑了&#xff0c;然后重启了下电脑。 结果就是&#xff1a; 现象描述 重启后 输入密码进入后 变得巨慢。好久才进入的桌面。…...

解决Git添加.gitignore文件后不生效的问题

1. 问题描述 如上图所示&#xff0c;在已存在.gitignore文件且已经提交过的Git管理的项目中&#xff0c;其中.class、.jar文件以及.idea目录内的内容全部都还是被Git管理了&#xff0c;可见.gitignore文件并没有生效。 2. 原因发现 .gitignore文件只能作用于 Untracked Files…...

Shell Linux学习笔记

注意&#xff1a;该文章摘抄之百度&#xff0c;仅当做学习笔记供小白使用&#xff0c;若侵权请联系删除&#xff01; 目录 什么是shell ? Linux正则匹配 grep tar与unzip echo history 重定向 shell 单双引号 位置参数 预定义变量 运算 正则表达式 字符截取命令 …...

kingbase常用SQL总结之锁等待信息

锁信息与等待事件 分析kingbase&#xff08;pg&#xff09;数据库锁等待、死锁时需要我们准确的定位等锁或者死锁相关的事务。关于获取锁等待信息或者死锁信息已有经典的SQL可以直接使用&#xff0c;但是需要我们先了解sql语句获取的每个字段的意义。 获取到锁等待事务不能完全…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么&#xff1f;它的作用是什么&#xff1f; Spring框架的核心容器是IoC&#xff08;控制反转&#xff09;容器。它的主要作用是管理对…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...