pytorch学习笔记(十一)
优化器学习
把搭建好的模型拿来训练,得到最优的参数。
import torch.optim
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=1)
class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()self.model1 = Sequential(Conv2d(3, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 64, 5, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):x = self.model1(x)return x
#定义loss
loss = nn.CrossEntropyLoss()
tudui = Tudui()
#一开始时采用比较大的学习速率学习,后面用比较小的学习速率学习
optim = torch.optim.SGD(tudui.parameters(), lr=0.01)
for epoch in range(20):#在每一轮学习之前都把loss设置成0#在每一轮的学习过程中计算的loss都加上去#这个数据是表示,在每一轮的学习的过程中在这一轮的整体的loss的求和,整体误差总和running_loss = 0.0for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)result_loss = loss(outputs, targets)optim.zero_grad()#得到每一个可调参数的梯度result_loss.backward()optim.step()#损失函数没有已知在变化,原因是只有单个循环下,只看了一次数据,这一次看到的数据对你下一次看到的数据预测的影响不大# print(result_loss)running_loss = running_loss + result_lossprint(running_loss)
在debug的过程中选择最后三行,观察梯度变化
其中optim.step()会把每一步更新的梯度用于数据的更新
现有模型的使用和修改


参数:root (string) - ImageNet数据集的根目录。
split (string,可选)-数据集分割,支持train或val。
transform(可调用的,可选的)-一个函数/转换,接收PIL图像并返回转换后的版本。例如,变换。RandomCrop
target_transform (callable, optional) -一个函数/transform,接收目标并对其进行变换。
loader -加载给定路径的图像的函数。

这边看看VGG16,因为它的预训练数据集太大了,不好下载,这边采用CIFAR10代替ImageNet的方法。

然后发现他的线性层输出的特征是1000,也是分1000个类,而CIFAR10只有10个类,这需要对网络模型进行修改,两种思路进行修改。
(1)直接修改最后一个线性层(6),将输出特征改为10
(2)加个线性层(7),输入设置为1000,而输出设置为10


模型的保存和模型的加载

官方推荐的保存下来文件比较小


方式2输出的是一个字典形式,要恢复成网络结构,要新建这个模型,然后还要通过字典的形式重建。

另外要注意用方式1(陷阱)保存的时候要在加载的部分引入你定义的结构否则会报错


相关文章:
pytorch学习笔记(十一)
优化器学习 把搭建好的模型拿来训练,得到最优的参数。 import torch.optim import torchvision from torch import nn from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear from torch.utils.data import DataLoaderdataset torchvision.datas…...
【并发编程】 synchronized的普通方法,静态方法,锁对象,锁升级过程,可重入锁,非公平锁
目录 1.普通方法 2.静态方法 3.锁对象 4.锁升级过程 5.可重入的锁 6.不公平锁 非公平锁的 lock 方法: 1.普通方法 将synchronized修饰在普通同步方法,那么该锁的作用域是在当前实例对象范围内,也就是说对于 SyncDemosdnewSyncDemo();这一个实例对象…...
jQuery 删除元素 —— W3school 详解 简单易懂(十四)
通过 jQuery,可以很容易地删除已有的 HTML 元素。 删除元素/内容 如需删除元素和内容,一般可使用以下两个 jQuery 方法: remove() - 删除被选元素(及其子元素)empty() - 从被选元素中删除子元素 jQuery remove() 方…...
在 Linux 上搭建 Java 环境
目录 一、安装jdk 1. 挑选 jdk 版本 2. 安装 3. 验证 jdk 二、安装tomcat 1. 下载压缩包 2. 上传压缩包给 Linux (需要用到 rz 命令) 3. 解压压缩包(需要用到 unzip) 4. 进入 bin 目录 5. 给启动脚本增加可执行权限 6. 启…...
深度学习-Pytorch如何保存和加载模型
深度学习-Pytorch如何保存和加载模型 用pytorch构建模型,并训练模型,得到一个优化的模型,那么如何保存模型?然后如何又加载模型呢? pytorch 目前在深度学习具有重要的地位,比起早先的caffe,te…...
2.数据结构 顺序表(自留笔记)
文章目录 一.静态顺序表:长度固定二.动态顺序表1.下面证明原地扩容和异地扩容代码如下:2.下面是写一段Print,打印数字看看:3.头插4.尾删5.头删6.越界一定会报错吗7.下标插入8.下标删除9.查找数字10.应用:利用顺序表写一…...
将python打包成exe文件
将python打包成exe文件 文章目录 将python打包成exe文件1.安装PyInstaller2.配置pyinstaller到环境变量3.打包 以上一篇文章🔗用python删除重复文件并放入回收站为例,演示了如何用python写一个删除重复文件并放入回收站的功能代码,但是每次都…...
大数据处理,Pandas与SQL高效读写大型数据集
大家好,使用Pandas和SQL高效地从数据库中读取、处理和写入大型数据集,以实现最佳性能和内存管理,这是十分重要的。 处理大型数据集往往是一项挑战,特别是在涉及到从数据库读取和写入数据时。将整个数据集加载到内存中的传统方法可…...
【2024年5月备考新增】《软考高项论文专题 (2)论文背景(合集)》
1 论文的项目背景 1.1 论文写法 段落字数 - 正文全部字数不少于2000字孙悟空大闹天宫,被如来镇压,唐僧收服孙悟空,开始去西天取经。背景500字因为路途遥远,所以需要九九八十一难,才能取得正经。过渡段150字第一难、第二难 … 第八十一难过程1300字取得正经,唐僧只受了八…...
Mysql复习1--理论基础+操作实践--更新中
Mysql 索引索引的分类索引失效sql优化 删除数据库数据恢复 索引InnoDB引擎MyISAM引擎Memory引擎Btree索引支持支持支持hash索引不支持不支持支持R-tree索引不支持支持不支持Full-text索引5.6版本以后支持支持不支持 索引 解释说明: 索引指的是帮助mysql高效的获取数据的结构叫…...
微信小程序打卡定位实现方案
1背景 业务场景是考勤打卡,在考勤打卡这个业务场景中有两个关键技术点:定位和人员识别。用户界面初步确定是用微信小程序来实现,本文就定位问题做了技术上的调研。 2调研内容 平台注意事项 获取位置 选择位置 查看位置 距离计算 定位精度 防作弊 Demo 3调研结果 3.1平台注…...
小迪安全23WEB 攻防-Python 考点CTF 与 CMS-SSTI 模版注入PYC 反编译
#知识点: 1、PYC 文件反编译 2、Python-Web-SSTI 3、SSTI 模版注入利用分析 各语言的SSIT漏洞情况: SSIT漏洞过程: https://xz.aliyun.com/t/12181?page1&time__1311n4fxni0Qnr0%3DD%2FD0Dx2BmDkfDCDgmrYgBxYwD&alichlgrefhtt…...
计算机毕业设计 基于SpringBoot的律师事务所案件管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...
如何使用宝塔面板配置Nginx反向代理WebSocket(wss)
本章教程,主要介绍一下在宝塔面板中如何配置websocket wss的具体过程。 目录 一、添加站点 二、申请证书 三、配置代理 1、增加配置内容 2、代理配置内容 三、注意事项 一、添加站点 二、申请证书 三、配置代理 1、增加配置内容 map $http_upgrade $connection_…...
vulhub之redis篇
CVE-2022-0543 | redis的远程代码执行漏洞 简介 CVE-2022-0543 该 Redis 沙盒逃逸漏洞影响 Debian 系的 Linux 发行版本,并非 Redis 本身漏洞, 漏洞形成原因在于系统补丁加载了一些redis源码注释了的代码 原理分析 redis一直有一个攻击面,就是在用户连接redis后,可以通过ev…...
Lua简介和应用场景介绍
Lua 的介绍 起源:Lua 于 1993 年在巴西里约热内卢的天主教大学(PUC-Rio)由 Roberto Ierusalimschy、Waldemar Celes 和 Luiz Henrique de Figueiredo 开发。 设计目的:Lua 设计的主要目标是为了嵌入到其他应用程序中,…...
【手写数据库toadb】10 开发数据库内核开发阶段-数据库模型
数据库内核模型介绍 专栏内容: 手写数据库toadb 本专栏主要介绍如何从零开发,开发的步骤,以及开发过程中的涉及的原理,遇到的问题等,让大家能跟上并且可以一起开发,让每个需要的人成为参与者。 本专栏会定期更新,对应的代码也会定期更新,每个阶段的代码会打上tag,方…...
02-Redis持久化、主从与哨兵架构详解
文章目录 Redis持久化RDB快照(snapshot)bgsave的写时复制(COW)机制AOF(append-only file)AOF重写RDB 和 AOF ,我应该用哪一个? Redis 4.0 混合持久化Redis数据备份策略: Redis主从架构redis主从…...
无刷电机篇(一)直流无刷电机(BLDC)介绍
目录 01 直流无刷电机介绍 直流无刷电机内部结构 转子描述 定子描述 02 直流无刷电机分类 直流无刷电机分类描述 内、外转子电机描述 内、外转子电机区别 03 直流无刷电机参数 无刷电机参数 04 文章总结 大家好,这里是程序员杰克。一名平平无奇的嵌入式软…...
【GitHub项目推荐--不错的Flutter项目】【转载】
01 可定制的图表库 FL Chart是一个高度可定制的 Flutter 图表库,支持折线图、条形图、饼图、散点图和雷达图 。 项目地址:https://github.com/imaNNeoFighT/fl_chart LineChart BarChart PieChart Sample1 Sample2 Sample3 …...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
