当前位置: 首页 > news >正文

决策树的基本构建流程

决策树的基本构建流程

决策树的本质是挖掘有效的分类规则,然后以树的形式呈现

这里有两个重点:

  1. 有效的分类规则;
  2. 树的形式。

有效的分类规则:叶子节点纯度越高越好,就像我们分红豆和黄豆一样,我们当然是想把红豆和黄豆完全分开。

这里标签的纯度的衡量指标有:

  1. 分类误差;
  2. 信息熵(Entropy)
  3. 基尼系数(Gini)

我们举例来看看这三个指标是如何计算的:

对于单个数据集

假如我们有10条样本,6条0类样本,4条1类样本

则0类样本占: 6 10 \frac{6}{10} 106
1类样本占: 4 10 \frac{4}{10} 104

分类误差(1-多数类的占比): 1 − 6 10 = 0.4 1-\frac{6}{10}=0.4 1106=0.4
信息熵: − 6 10 ∗ l o g 2 6 10 − 4 10 ∗ l o g 2 4 10 = 0.97 -\frac{6}{10}*log_2\frac{6}{10}-\frac{4}{10}*log_2\frac{4}{10} =0.97 106log2106104log2104=0.97
基尼系数: 1 − ( ( 6 10 ) 2 + ( 4 10 ) 2 ) = 0.48 1-((\frac{6}{10})^2+(\frac{4}{10})^2)=0.48 1((106)2+(104)2)=0.48

对于多个数据集
在这里插入图片描述

如何计算B1,B2两个子节点整体的评估指标?

加权求和

这里以基尼系数为例

Gini_B1 = 1 − ( ( 2 5 ) 2 + ( 3 5 ) 2 ) = 0.48 1-((\frac{2}{5})^2+(\frac{3}{5})^2)=0.48 1((52)2+(53)2)=0.48

Gini_B2 = 0

Gini_B = 5 8 \frac{5}{8} 85*Gini_B1 + 3 8 \frac{3}{8} 83*Gini_B2= 5 8 ∗ 0.48 \frac{5}{8}*0.48 850.48+ 3 8 ∗ 0 \frac{3}{8}*0 830=0.3

介绍完了有效的分类规则,我们再来看看第二个重点:树的形式。
下面简单画一下二层分类树。
在这里插入图片描述
主流的决策树分类类别可划分为:

  1. D3(Iterative Dichotomiser 3) 、C4.5、C5.0决策树
  2. CART(Classification and Regression Trees)决策树
  3. CHAID(Chi-square automatic interaction detection)树

下面我们分别来看看决策树构建重点问题

1. 决策树的生长方向?

决策树生长的方向也就是令每个划分出来的子集纯度越来越高的方向

2. 如何挑选有效的分类规则?

选择信息增益最大的

假设我们有age列:
在这里插入图片描述
首先逐列对特征进行数值排序:
在这里插入图片描述
然后寻找特征不同取值之间的中间点为切点:
在这里插入图片描述
N个取值,有N-1种划分方式
这里有10个取值,所以有9种划分方式将数据集一分为二。
假设我们以10和9的中间点为划分方式
10 + 9 2 = 9.5 \frac{10+9}{2}=9.5 210+9=9.5
则我们可以以age是否小于等于9.5为划分规则,将数据集一分为二。

Notes:
1.CART(二叉树)用这种方法同时处理连续变量(预测值是划分后子数据集的均值)和离散变量;
2. C4.5连续变量用这种方式,离散变量用列的取值。

信息增益的计算:
CART Gain = Gini(父节点)- Gini(子节点)
ID3和C4.5 Gain = Entropy(父节点)- Entropy(子节点)

3. 如何停止迭代生长?

收敛条件:
(1)两轮迭代损失函数的差值小于某个值;
(2)限制最大迭代次数,也就是约束树最多生长几层

相关文章:

决策树的基本构建流程

决策树的基本构建流程 决策树的本质是挖掘有效的分类规则,然后以树的形式呈现。 这里有两个重点: 有效的分类规则;树的形式。 有效的分类规则:叶子节点纯度越高越好,就像我们分红豆和黄豆一样,我们当然…...

[极客大挑战 2019]Upload1

直接上传php一句话木马&#xff0c;提示要上传image 把文件名改成gif并加上gif文件头后&#xff0c;绕过了对image类型的检测&#xff0c;但是提示文件内含有<?&#xff0c;且bp抓包后改回php也会被检测 那我们考虑使用js执行php代码 <script languagephp>eval($_PO…...

Android 渲染机制

1 Android 渲染流程 一般情况下&#xff0c;一个布局写好以后&#xff0c;使用 Activity#setContentView 调用该布局&#xff0c;这个 View tree 就创建好了。Activity#setContentView 其实是通过 LayoutInflate 来把布局文件转化为 View tree 的&#xff08;反射&#xff09;…...

go语言Map与结构体

1. Map map是一种无序的基于key-value的数据结构&#xff0c;Go语言中的map是引用类型&#xff0c;必须初始化才能使用。 1.1. map定义 Go语言中 map的定义语法如下 map[KeyType]ValueType其中&#xff0c; KeyType:表示键的类型。ValueType:表示键对应的值的类型。map类型的…...

C#,打印漂亮杨辉三角形(帕斯卡三角形)的源代码

杨辉 Blaise Pascal 这是某些程序员看完会哭的代码。 杨辉三角形&#xff08;Yanghui Triangle&#xff09;&#xff0c;是一种序列数值的三角形几何排列&#xff0c;最早出现于南宋数学家杨辉1261年所著的《详解九章算法》一书。 欧洲学者&#xff0c;最先由帕斯卡&#x…...

[SUCTF 2019]CheckIn1

黑名单过滤后缀’ph&#xff0c;并且白名单image类型要有对应文件头 对<?过滤&#xff0c;改用GIF89a<script languagephp>eval($_POST[cmd]);</script>&#xff0c;成功把getshell.gif上传上去了 尝试用.htaccess将上传的gif当作php解析&#xff0c;但是失败…...

C语言练习题110例(十)

91.杨辉三角 题目描述: KK知道什么叫杨辉三角之后对杨辉三角产生了浓厚的兴趣&#xff0c;他想知道杨辉三角的前n行&#xff0c;请编程帮他 解答。杨辉三角&#xff0c;本质上是二项式(ab)的n次方展开后各项的系数排成的三角形。其性质包括&#xff1a;每行的端点数为1&…...

前端学习-0125

<h>标签 含义&#xff1a;标题 级别&#xff1a;<h1> - <h6> 快捷键生成 &#xff1a;h$*[0,6] 属性&#xff1a;align"left|center|right" <p>标签 含义&#xff1a; 段落 <br>标签 含义&#xff1a;换行 <hr>标签 含义&…...

gin中使用validator做参数校验

在web开发中对请求参数进行校验&#xff0c;通常在代码中定义与请求参数相对应的模型&#xff08;结构体&#xff09;&#xff0c;借助模型绑定快捷地解析请求中的参数&#xff0c;例如 gin 框架中的Bind和ShouldBind系列方法。 gin框架使用github.com/go-playground/validato…...

理想架构的Doherty功率放大器理论与仿真

Doherty理论—理想架构的Doherty功率放大器理论与仿真 参考&#xff1a; 三路Doherty设计 01 射频基础知识–基础概念 ADS仿真工程文件链接&#xff1a;理想架构的Doherty功率放大器理论与仿真 目录 Doherty理论---理想架构的Doherty功率放大器理论与仿真0、Doherty架构的作用…...

22. 离线MC强化学习算法(1)

文章目录 1. 理解离线MC强化学习的关键2. 什么是重要性采样3.重要性采样定理给我们的一般启示4.重要性采样定理给离线蒙特卡洛强化学习的启示 1. 理解离线MC强化学习的关键 离线强化学习的特点是采样策略 π ′ ≠ 待评估策略 π \pi\ne 待评估策略\pi π′待评估策略π&…...

如何阅读xml电子发票

xml电子发票是官方给出的电子存档的文件格式&#xff0c;本质是文本&#xff0c;所以文件很小&#xff0c;大量发票存储&#xff0c;能够更加凸显优势。 但是xml电子发票不方便阅读&#xff0c;因为里面是xml格式&#xff0c;对于财务人员来讲&#xff0c;看“代码”简直太难了…...

php实现多进程的几种方式

目录 一&#xff1a;使用pcntl扩展库 二&#xff1a;使用Swoole扩展 三&#xff1a;使用多进程模式PHP-FPM 在PHP中实现多进程主要有以下几种方式&#xff1a; 一&#xff1a;使用pcntl扩展库 pcntl扩展库提供了多线程相关的函数&#xff0c;如pcntl_fork()用于创建子进程…...

CmakeList教程

一、CmakeList介绍&#xff1a; cmake 是一个跨平台、开源的构建系统。它是一个集软件构建、测试、打包于一身的软件。它使用与平台和编译器独立的配置文件来对软件编译过程进行控制。它会通过写的语句自动生成一个MakeFile,从而实现高效编译 二、CmakeList的常用指令 1.指定…...

JavaWeb之JavaScript-Vue --黑马笔记

什么是JavaScript&#xff1f; JavaScript&#xff08;简称&#xff1a;JS&#xff09; 是一门跨平台、面向对象的脚本语言。是用来控制网页行为的&#xff0c;它能使网页可交互。 JavaScript 和 Java 是完全不同的语言&#xff0c;不论是概念还是设计。但是基础语法类似。 …...

pikachu_ssrf攻略

ssrf&#xff08;curl&#xff09;&#xff1a; 打开pikachu靶场&#xff1a; http://127.0.0.1/pikachu-master/vul/ssrf/ssrf_curl.php?urlhttp://127.0.0.1/pikachu-master/vul/ssrf/ssrf_info/info1.php 发现URL地址最后面是info1.php 猜测一下有没有可能存在info2.php?…...

门面模式 Facade Pattern

门面模式 门面模式&#xff08;Facade Pattern&#xff09;&#xff0c;也称之为外观模式&#xff0c;其核心为&#xff1a;外部与一个子系统的通信必须通过一个统一的外观对象进行&#xff0c;使得子系统更易于使用。 在软件开发领域有这样一句话&#xff1a;计算机科学领域…...

Linux基础指令大汇总

Linux的指令比较多&#xff0c;在学习的过程中要学会总结和归纳&#xff0c;同时结合实践多多使用&#xff0c;就像学数学一样&#xff0c;不是背过公式就等于掌握的&#xff0c;而是要知道在什么时候用&#xff0c;怎么用才是关键。 这篇文章会列举一系列常用的指令&#xff0…...

Unity配置表xlsx/xls打包后读取错误问题

前言 代码如下&#xff1a; //文本解析private void ParseText(){//打开文本 读FileStream stream File.Open(Application.streamingAssetsPath excelname, FileMode.Open, FileAccess.Read, FileShare.Read);//读取文件流IExcelDataReader excelRead ExcelReaderFactory…...

CSS基本知识总结

目录 一、CSS语法 二、CSS选择器 三、CSS样式表 1.外部样式表 2.内部样式表 3.内联样式 四、CSS背景 1.背景颜色&#xff1a;background-color 2.背景图片&#xff1a;background-image 3.背景大小&#xff1a;background-size 4.背景图片是否重复&#xff1a;backg…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...