当前位置: 首页 > news >正文

算法36:单调栈结构、子数组最小乘积的最大值问题(力扣1586)----单调栈

单调栈:就是在栈中实现数据的单调性。即从栈底到栈顶,要么递增,要么递减。

那么,使用单调栈,可以解决什么问题呢?

给定一个可能含有重复值的数组arr,i位置的数一定存在如下两个信息

1)arr[i]的左侧离i最近并且小于(或者大于)arr[i]的数在哪?

2)arr[i]的右侧离i最近并且小于(或者大于)arr[i]的数在哪? 如果想得到arr中所有位置的两个信息,怎么能让得到信息的过程尽量快

题目一:给定一个一维数组,数据都为正整数并且无重复值,要求设计一个O(N)时间复杂度的算法,找出任意位置的数据,左侧小于当前位置最近的数在哪,右侧小于当前数最近的的数在哪?

假设: 这个数组是 {1,3,5,4}。栈的单调性从栈底到栈顶递增。

那么如下:

5
3
1

也就是说,前3个数符合预期的栈的单调性,可以正常的放入栈中。那么,当最后一个数据4想要放入栈中的时候,发现栈顶元素为5,比自己大。直接放入就破坏了栈的单调性了。

1. 我们需要把栈顶元素5弹出,这5就知道右侧小于自己的并且距离最近的数为4,而左侧离自己最近并且小于自己的数为3.

2. 此时,栈顶元素为3,小于4. 那么4直接放入栈顶。整个数组全部结束

4
3
1

3. 栈循环弹出,4是最后一个元素,并且栈具有单调性。因此,弹出4可以知道,左侧离自己最近的数为3. 而右侧没有比自己更小的数

4. 弹出3,左侧比自己小的数是1,而右侧没有比自己小的数

5. 弹出1,此时栈空了。左侧、右侧都没有小于自己的数。

以上一切,只是为了直观的体现栈整个操作流程。而实际的算法设计肯定是不能用数据来直接使用的,而是需要使用每个数据对应的位置,即下标

//无重复元素public int[][] dp(int[] arr){if(arr == null || arr.length == 0) {return null;}int[][] dp = new int[arr.length][arr.length];Stack<Integer> stack = new Stack<>();for (int i = 0; i < arr.length; i++){while (!stack.isEmpty() && arr[stack.peek()] > arr[i]){int cur = stack.pop();// -1代表不存在左侧比cur下标对应的值更小的值int leftIndex = stack.isEmpty() ? -1 : stack.peek();dp[cur][0] = leftIndex;dp[cur][1] = i;}//放入下标stack.push(i);}//栈中剩余元素,保持单调增while (!stack.isEmpty()) {int cur = stack.pop();// -1代表不存在左侧比cur下标对应的值更小的值int leftIndex = stack.isEmpty() ? -1 : stack.peek();dp[cur][0] = leftIndex;//因为单调增、所有右侧不存在比自己还小的值了dp[cur][1] = -1;}return dp;}

题目二:数组存在重复元素,设计一个栈,要求能够快速找到任意位置左、右侧比自己小、位置最近的数据。

public static int[][] getNearLess(int[] arr) {int[][] res = new int[arr.length][2];Stack<List<Integer>> stack = new Stack<>();for (int i = 0; i < arr.length; i++) { // i -> arr[i] 进栈while (!stack.isEmpty() && arr[stack.peek().get(0)] > arr[i]) {List<Integer> popIs = stack.pop();int leftLessIndex = stack.isEmpty() ? -1 : stack.peek().get(stack.peek().size() - 1);for (Integer popi : popIs) {res[popi][0] = leftLessIndex;res[popi][1] = i;}}if (!stack.isEmpty() && arr[stack.peek().get(0)] == arr[i]) {stack.peek().add(Integer.valueOf(i));} else {ArrayList<Integer> list = new ArrayList<>();list.add(i);stack.push(list);}}while (!stack.isEmpty()) {List<Integer> popIs = stack.pop();int leftLessIndex = stack.isEmpty() ? -1 : stack.peek().get(stack.peek().size() - 1);for (Integer popi : popIs) {res[popi][0] = leftLessIndex;res[popi][1] = -1;}}return res;}

题目三:力扣1856. 子数组最小乘积的最大值

https://leetcode.cn/problems/maximum-subarray-min-product/description/

题目详情直接打开连接进行查看,这里直接说解题思路。

1. 给定数组,就存在子数组,并且子数组是连续的

2.子数组中肯定是存在最小值的,也必然会知道子数组累加和。

3. 假设每个数都是最小值,这样就能利用单调栈结构找到左侧、右侧比自己小的位置。那么除了这两个位置以外,中间部分的数据就是自己最小了。利用这个思想,我们来实现代码

数据1354
下标0123
累加和14913

5左侧比自己小的数据为3,对应下标为1;

5右侧比自己小的数据为4,对应下标为3;

也就是说5这个数据想要做最小值,那么下标1到3之间,并且不能包含下标1和下标3的和。

既然不能包含到下标为3的位置,变相的也就是能够包含到下标为2的位置,即累加和为 9 - 4 = 5;

那子数组累加和 * 最小值 =  5 * 5 = 25;

其他的依次类推........

package code04.单调栈_01;import java.util.Stack;/*** 1856. 子数组最小乘积的最大值* https://leetcode.cn/problems/maximum-subarray-min-product/description/*/
public class Code01_MinSumOfSubArr {public int maxSumMinProduct(int[] nums){if (nums == null || nums.length == 0) {return 0;}int size = nums.length;//前缀和数组。 题目规定要使用64位有符号整数保存long[] dp = new long[size];dp[0] = nums[0];for (int i = 1; i < size; i++) {dp[i] = dp[i-1] + nums[i];}long ans = Long.MIN_VALUE;//[0 ......)Stack<Integer> stack = new Stack();for(int i = 0; i < size; i++){while (!stack.isEmpty()&& nums[stack.peek()] >= nums[i]) {//当前正在处理的数下标int cur = stack.pop();long sum = stack.isEmpty() ? dp[i-1] : dp[i-1] - dp[stack.peek()];ans = Math.max(ans, sum * nums[cur]);}//放入下标stack.push(i);}//右侧值越来越大while (!stack.isEmpty()) {//当前正在处理的数下标int cur = stack.pop();long sum = stack.isEmpty() ? dp[size-1] : (dp[size-1] - dp[stack.peek()]);ans = Math.max(ans, sum * nums[cur]);}return (int) (ans % 1000000007);}public static void main(String[] args){int[] nums = {3,1,5,6,4,2};Code01_MinSumOfSubArr test = new Code01_MinSumOfSubArr();System.out.println(test.maxSumMinProduct(nums));}
}

此处可能会有疑问,此处使用的是无重复元素构造单调栈的算法,这一题不需要考虑重复元素的情况吗?举个例子,假如数组为 {1,2,3,2}

栈中放入1,2 3.  当放入最后一个2的时候,会把栈中的3和2弹出,并且把最后一个2入栈。 而最后一个2右侧没有比他小的值,左侧比他小的值为1,对应的下标为0. 也就是说从下标0到最后一个2的位置,此时最后一个2是最小值。当然,下标0处的1是不包含在内的。

也就是说,重复元素具有连通性,很多时候是不需要考虑重复元素的情况的。

相关文章:

算法36:单调栈结构、子数组最小乘积的最大值问题(力扣1586)----单调栈

单调栈&#xff1a;就是在栈中实现数据的单调性。即从栈底到栈顶&#xff0c;要么递增&#xff0c;要么递减。 那么&#xff0c;使用单调栈&#xff0c;可以解决什么问题呢&#xff1f; 给定一个可能含有重复值的数组arr&#xff0c;i位置的数一定存在如下两个信息 1&#x…...

django mysql in 有序返回

from django.db.models import * ordering f"FIELD(id, {,.join([str(_) for _ in ids])})" # 默认就按照算法返回的 id 排序p_data_result PeptidesDataResult.objects.using("polypeptide").filter(id__inids).values().extra(select{ordering: orderi…...

c++24.1.26嵌套if语句

嵌套if语句&#xff1a;if语句中的if语句 实践&#xff1a;...

机器学习--基础概念(二)

1.分类算法 分类算法是有监督学习的一个核心问题&#xff0c;他从数据中学习一个分类决策函数或分类模型&#xff0c;对新的输入进行预测&#xff0c;输出变量取有限个离散值。 以下是一些常见的分类算法&#xff1a; 逻辑回归 (Logistic Regression): 用于二分类问题&#x…...

Ubuntu20.04 安装 ROS noetic + MAVROS

本文在 AlphaCatOvO【ROS】在 Ubuntu 20.04 安装 ROS 的详细教程 基础上&#xff0c;根据实际安装经验&#xff0c;稍微进行补充。 一、安装Ubuntu20.04 假设已经正确安装。 二、安装 ROS noetic 2.1 换源 执行 sudo apt update sudo mv /etc/apt/sources.list /etc/apt/…...

【数学笔记】一元n次不等式,分式不等式,绝对值不等式

不等式 基本性质 一元n次不等式一元二次不等式一元高次不等式分式不等式绝对值不等式 基本性质 性质 a > b ⇔ b < a a>b\Leftrightarrow b<a a>b⇔b<a a > b , b > c ⇒ a > c a>b,b>c\Rightarrow a>c a>b,b>c⇒a>c a > b ,…...

转载-android性能优化

android性能优化 Reason: Broadcast of Intent { actandroid.intent.action.TIME_TICK ActivityManager: ANR in com.***.*** PID: 16227 Reason: Broadcast of Intent { actandroid.intent.action.TIME_TICK flg0x50000014 (has extras) }有那么一段时间我被这个ANR折磨到每…...

笔记 | Clickhouse命令行查询

在 ClickHouse 中&#xff0c;可以使用命令行客户端执行查询。默认情况下&#xff0c;ClickHouse 的命令行客户端称为 clickhouse-client。下面是一些基本的步骤和示例&#xff0c;用于使用 clickhouse-client 进行查询。 首先&#xff0c;需要确保已经安装了 ClickHouse 服务…...

Dockerfile-xxxx

1、Dockerfile-server FROM openjdk:8-jdk-alpine WORKDIR /app COPY . . CMD java -Xms1536M -Xmx1536M -XX:UseG1GC -jar -Dlog4j2.formatMsgNoLookupstrue -Dloader.pathresources,lib -Duser.timezoneGMT-05 /app/server-main-1.0.0.jar 2、Dockerfile-bgd #FROM openjdk…...

Vue中的$attrs

今天产品经理要求做保留某组件全部功能&#xff0c;还要在它的基础上增加东西。如果不嫌麻烦的话就笨办法&#xff0c;但是想一下怎么只用少量代码高效的二次封装组件呢 Vue中的$attrs 在 Vue2 中&#xff0c;attr 是指组件接收的 HTML 特性(attribute)&#xff0c;通过 prop…...

使用阿里云的oss对象存储服务实现图片上传(前端vue后端java详解)

一&#xff1a;前期准备&#xff1a; 1.1&#xff1a;注册阿里云账号&#xff0c;开启对象存储oss功能&#xff0c;创建一个bucket&#xff08;百度教程多的是&#xff0c;跟着创建一个就行&#xff0c;创建时注意存储类型是标准存储&#xff0c;读写权限是公共读&#xff09;…...

python实例100第32例:使用a[::-1]按相反的顺序输出列表的值

题目&#xff1a;按相反的顺序输出列表的值。 程序分析&#xff1a; a[n:-n]作用是去除前n个元素和末n个元素a[-n]作用是取倒数第n个元素a[:-n]的作用是去除后n个元素a[:&#xff1a;-1]的作用是将所有元素逆序排列a[n:&#xff1a;-1] 的作用是从第n个元素截取后逆序排列 程序…...

python执行脚本的时候获取输入参数

当我们执行脚本的时候&#xff0c;通常都会执行 python test.py -i xxx -o xxx&#xff0c;这里的 -i 和 -o 都是输入参数&#xff0c;这到底是怎么传递的呢&#xff1f; 本文纯粹记录一下 import argparseif __name__ __main__:print("hello")# 创建AugumentParser…...

Halcon指定区域的形状匹配

Halcon指定区域的形状匹配 文章目录 Halcon指定区域的形状匹配1.在参考图像中选择目标2.创建模板3.搜索目标 在这个实例中&#xff0c;会介绍如何根据选定的ROI选择合适的图像金字塔参数&#xff0c;创建包含这个区域的形状模板&#xff0c;并进行精确的基于形状模板的匹配。最…...

Linux——常用命令

1、命令的基本格式 对服务器来讲&#xff0c;图形界面会占用更多的系统资源&#xff0c;而且会安装更多的服务、开放更多的端口&#xff0c;这对服务器的稳定性和安全性都有负面影响。其实&#xff0c;服务器是一个连显示器都没有的家伙&#xff0c;要图形界面干什么&#xff…...

外包干了2个月,技术反而退步了...

先说一下自己的情况&#xff0c;本科生&#xff0c;19年通过校招进入广州某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...

洛谷C++简单题练习day6—P1830 城市轰炸

day6--P1830 城市轰炸--1.26 习题概述 题目背景 一个大小为 nm 的城市遭到了 x 次轰炸&#xff0c;每次都炸了一个每条边都与边界平行的矩形。 题目描述 在轰炸后&#xff0c;有 y 个关键点&#xff0c;指挥官想知道&#xff0c;它们有没有受到过轰炸&#xff0c;如果有&a…...

【linux-interconnect】What NVIDIA MLNX_OFED is?

NVIDIA MLNX_OFED Documentation v23.07 - NVIDIA Docs 文章目录 What NVIDIA MLNX_OFED is&#xff1f;Overview[Software Download](https://docs.nvidia.com/networking/display/mlnxofedv23070512#src-2396583107_NVIDIAMLNX_OFEDDocumentationv23.07-SoftwareDownload) Wh…...

Unity开发中的XML注释

在Unity开发中&#xff0c;XML注释主要用于C#脚本的注释&#xff0c;以帮助生成代码文档和提供IntelliSense功能。以下是一些关于如何使用XML注释的技巧&#xff1a; 创建注释&#xff1a; 在C#中&#xff0c;XML注释是由///或/**...*/开始的。例如 /// <summary> /// 这…...

[MQ]常用的mq产品图形管理web界面或客户端

一、MQ介绍 1.1 定义 MQ全称为Message Queue&#xff0c;消息队列是应用程序和应用程序之间的通信方法。 如果非要用一个定义来概括只能是抽象出来一些概念&#xff0c;概括为跨服务之间传递信息的软件。 1.2 MQ产品 较为成熟的MQ产品&#xff1a;IBMMQ&#xff08;IBM We…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...