yolov8 opencv dnn部署自己的模型
源码地址
- 本人使用的opencv c++ github代码,代码作者非本人
使用github源码结合自己导出的onnx模型推理自己的视频
推理条件
windows 10
Visual Studio 2019
Nvidia GeForce GTX 1070
opencv4.7.0 (opencv4.5.5在别的地方看到不支持yolov8的推理,所以只使用opencv4.7.0)
导出yolov8模型
yolov8版本: version = ‘8.0.110’
首先将default.yaml中的一些配置修改以下,将只修改的部分贴上去,注意下面的batch一定要设置为1
task: detect # YOLO task, i.e. detect, segment, classify, pose
mode: export # YOLO mode, i.e. train, val, predict, export, track, benchmark# Train settings -------------------------------------------------------------------------------------------------------
# model: C:\Users\HUST\Desktop\yolov8_ultralytics\ultralytics\models\v8\yolov8.yaml # path to model file, i.e. yolov8n.pt, yolov8n.yaml
model: C:\Users\Administrator\Desktop\yolov8_ultralytics\runs\detect\yolov8n\weights\best.pt # path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: C:\Users\Administrator\Desktop\yolov8_ultralytics/ultralytics/datasets/custom.yaml # path to data file, i.e. coco128.yaml
weights: yolov8n.pt
epochs: 1 # number of epochs to train for
patience: 50 # epochs to wait for no observable improvement for early stopping of training
batch: 1 # number of images per batch (-1 for AutoBatch)
default.yaml中的export部分的配置也需要修改
# Export settings ------------------------------------------------------------------------------------------------------
format: onnx # format to export to
keras: False # use Keras
optimize: False # TorchScript: optimize for mobile
int8: False # CoreML/TF INT8 quantization
dynamic: False # ONNX/TF/TensorRT: dynamic axes
simplify: False # ONNX: simplify model
opset: 12 # ONNX: opset version (optional)
workspace: 4 # TensorRT: workspace size (GB)
nms: False # CoreML: add NMS
然后直接运行ultralytics/yolo/engine/exporter.py

测试一下导出的best.onnx可不可用,直接正常的val即可

将best.onnx模型放入netron中,onnx的输入和输出如下图1所示

图 1 图1 图1
c++部署
先将源码复制到下图位置中

环境和代码的大致步骤跟yolov5 opencv dnn部署 github代码一样
由于源码中使用的输入尺寸如图2是640 * 480的,我导出模型时使用的模型的输入如图1是640 * 640,所以需要对尺寸的那一部分需要进行修改,修改为640 * 640
const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.45;
const float NMS_THRESHOLD = 0.5;
const float CONFIDENCE_THRESHOLD = 0.25;

图 2 图2 图2在进行修改之后,就可以直接运行yolo.cpp
c++推理结果
yolov8_deploy_fire
相关文章:
yolov8 opencv dnn部署自己的模型
源码地址 本人使用的opencv c github代码,代码作者非本人 使用github源码结合自己导出的onnx模型推理自己的视频 推理条件 windows 10 Visual Studio 2019 Nvidia GeForce GTX 1070 opencv4.7.0 (opencv4.5.5在别的地方看到不支持yolov8的推理,所以只使用opencv…...
插槽(64-67)
文章目录 插槽1.插槽 - 默认插槽(组件内可以定制一处结构)2.插槽 - 后备内容(默认值)3.插槽 - 具名插槽(组件内可以定制多处结构)4.作用域插槽(插槽的一个传参语法) 插槽 插槽分类:默认插槽和具名插槽 1.插槽 - 默认插槽(组件内可以定制一处结构) 作用…...
C# LING查询语法学习,扩展方法的使用
class Program { #region 示例1:不使用LINQ查询数组 //static void Main(string[] args) //{ // int[] nums { 1, 7, 2, 6, 5, 4, 9, 13, 20 }; // List<int> list new List<int>(); // foreach (int item in nums) …...
自然语言推断:微调BERT
微调BERT 自然语言推断任务设计了一个基于注意力的结构。现在,我们通过微调BERT来重新审视这项任务。自然语言推断是一个序列级别的文本对分类问题,而微调BERT只需要一个额外的基于多层感知机的架构,如下图中所示。 本节将下载一个预训练好的…...
立创EDA学习:设计收尾工作
布线整理 ShiftM,关闭铺铜显示 调整结束后再使用快捷键”ShiftM“打开铺铜 过孔 在空白区域加上一些GND过孔,连接顶层与底层的铺铜。放置好”过孔“后,隐藏铺铜,观察刚才放置的过孔有没有妨碍到其他器件 调整铺铜 先打开铺铜区&…...
ShardingSphere之ShardingJDBC客户端分库分表上
目录 什么是ShardingSphere? 客户端分库分表与服务端分库分表 ShardingJDBC客户端分库分表 ShardingProxy服务端分库分表 ShardingSphere实现分库分表的核心概念 ShardingJDBC实战 什么是ShardingSphere? ShardingSphere是一款起源于当当网内部的应…...
rust for循环步长-1,反向逆序遍历
fn main() {for i in (0..3).rev().step_by(1) {print!("{}", i);} } // 打印结果:210Trait std::iter::Iterator fn rev(self) -> Rev< Self > where Self: Sized DoubleEndedIteratorfn step_by(self, step: usize) -> StepBy< Self &…...
编译与运行环境(C语言)
文章目录 前言编译环境编译链接 运行环境 前言 C语言代码的实现,存在两种不同的环境。 第一种是翻译环境,在这个环境中,源代码被转换为可执行的二进制指令。 翻译环境即我们日常使用编译器,将一个 " mission.c " 的文件…...
再谈Android View绘制流程
一,先思考何时开始绘制 笔者在这里提醒读者,Android的View是UI的高级抽象,我们平时使用的XML文件也好,本质是设计模式中的一种策略模式,其View可以理解为一种底层UI显示的Request。各种VIew的排布,来自于开…...
分布式定时任务系列8:XXL-job源码分析之远程调用
传送门 分布式定时任务系列1:XXL-job安装 分布式定时任务系列2:XXL-job使用 分布式定时任务系列3:任务执行引擎设计 分布式定时任务系列4:任务执行引擎设计续 分布式定时任务系列5:XXL-job中blockingQueue的应用 …...
python+Qt5 UOS 摄相头+麦克风测试,摄相头自动解析照片二维条码,麦克风解析音频文件
UI图片: 源代码: # -*- coding: utf-8 -*-# Form implementation generated from reading ui file CameraTestFrm.ui # # Created by: PyQt5 UI code generator 5.15.2 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is…...
MongoDB日期存储与查询、@Query、嵌套字段查询实战总结
缘由 MongoDB数据库如下: 如上截图,使用MongoDB客户端工具DataGrip,在filter过滤框输入{ profiles.alias: 逆天子, profiles.channel: },即可实现昵称和渠道多个嵌套字段过滤查询。 现有业务需求:用Java代码来查询…...
Windows版本Node.js常见问题及操作解决方式(小白入门必备)
npm i时ERROR:reason: certificate has expired问题 https://blog.csdn.net/m0_73360677/article/details/135774500 # 1.取消ssl验证;npm config set strict-ssl false#这个方法一般可以直接解决问题,如不能请尝试第二种方法# 2.更换npm镜像源&#x…...
09.Elasticsearch应用(九)
Elasticsearch应用(九) 1.搜索结果处理包括什么 排序分页高亮返回指定字段 2.排序 介绍 Elasticsearch支持对搜索结果排序,默认是根据相关度算分来排序 支持排序的字段 keyword数值地理坐标日期类型 排序语法 GET /[索引名称]/_sear…...
ROS2常用命令工具
ROS2常用命令工具 包管理工具ros2 pkg ros2 pkg create ros2 pkg create --build-type ament_python pkg_name rclpy std_msgs sensor_msgs –build-type : C或者C ament_cmake ,Python ament_python pkg_name :创建功能包的名字 rclpy std_msgs sens…...
Linux之快速入门
一、Linux目录结构 从Windows转到Linux最不习惯的是什么: 目录结构 Windows会分盘,想怎么放东西就怎么放东西,好处自由,缺点容易乱 Linux有自己的目录结构,不能随随便便放东西 /:根目录/bin:二进制文件&…...
C语言——操作符详解1
目录 1. 操作符的分类2. 二进制和进制转换2.1 二进制的概念2.2 二进制转十进制2.3 十进制转二进制2.4 二进制转八进制和十六进制2.4.1 二进制转八进制二进制转十六进制 3. 原码、反码和补码4. 移位操作符4.1 左移操作符4.2 右移操作符 5. 位操作符5.1 &5.2 |5.3 ^5.4 ~ 1. …...
C++学习| QT快速入门
QT简单入门 QT Creater创建QT项目选择项目类型——不同项目类型的区别输入项目名字和路径选择合适的构建系统——不同构建系统的却别选择合适的类——QT基本类之间的关系Translation File选择构建套件——MinGW和MSVC的区别 简单案例:加法器设计界面——构建加法器界…...
Android App开发-简单控件(1)——文本显示
本章介绍了App开发常见的几类简单控件的用法,主要包括:显示文字的文本视图、容纳视图的常用布局、响应点击的按钮控件、显示图片的图像视图等。然后结合本章所涉及的知识,完成一个实战项目“简单计算器”的设计与实现。 1.1 文本显示 本节介绍…...
[GYCTF2020]Ezsqli1
打开环境,下面有个提交表单 提交1,2有正确的查询结果,3以后都显示Error Occured When Fetch Result. 题目是sql,应该考察的是sql注入 简单fuzz一下 发现information_schema被过滤了,猜测是盲注了。 测试发现只要有东…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
