当前位置: 首页 > news >正文

c#: 表达式树的简化

环境:

  • .net 6

一、问题?

有下面的表达式:

var nums = new List<int> { 1, 2, 3 };
Expression<Func<int, bool>> exp = i => i > nums.Max();

我们知道,它其实就是:exp = i => i > 3;
那么问题是,我们如何将它改造成这样呢?

在orm解析lambda生成sql时,也经常遇到这样的窘境:

var scores = new List<Person> { new Person { Id = 1, Score = 60 } };
var sql = orm.Select<Person>().Where(i => i.Score > scores.Select(i=>i.Score).Max() || i.Score == 100).ToSql();
//error: 
// System.Exception:“未实现函数表达式 value(Program+<>c__DisplayClass0_0).scores.Select(i => i.Score).Max() 解析,如果正在操作导航属性集合,请使用 .AsSelect().Max()”public class Person
{public int Id { get; set; }public double Score { get; set; }
}

所以,就有了个想法:能不能对表达式进行简化呢?
就比如上面的可以改造成:orm.Select<Person>().Where(i => i.Score > 60 || i.Score == 100).ToSql();

二、表达式树简化原理

lambda表达式是表达式树的根, 它可能会有参数列表, 其子孙节点可能会引用这些参数, 也可能没有引用, 将没有引用的分支编译求值, 将结果再“放回”表达式中即可!

还是以下面的表达式为例:

var nums = new List<int> { 1, 2, 3 };
Expression<Func<int, bool>> exp = i => i > nums.Max();

在节点 > 的右侧 nums.Max() 没有引用参数列表, 那么它就可以被简化, 简化后就是:
exp = i => i > 3;

再看如下:

var nums = new List<int> { 1, 2, 3 };
Expression<Func<int, bool>> expr = i => i > nums.Max() || nums.Count > 0;

我们不仅可以将 || 右侧的简化为 true, 还可以根据||的短路特性对整体进行简化, 结果如下:
exp = i => true

三、表达式树的树状图

我们知道有各种各样的表达式类型, 如: +-/*Call/MemberInit等。
无论哪种类型, 都可以将它们抽象成一棵树, 如:
Call类型的表达式, 可以看成:

在这里插入图片描述

表达式的嵌套:
lambda表达式有可能会嵌套lambda, 如:

var nums = new List<int> { 1, 2, 3 };
Expression<Func<int>> expr = () => Filter(nums, i => i > 1);static int Filter(List<int> nums, Func<int, bool> func)
{return nums.First(i => func(i));
}

它的结构树如下:
在这里插入图片描述

这个是函数接受委托的, 还有函数接受lambda的,如:

var nums = new List<int> { 1, 2, 3 };
Expression<Func<int>> expr = () => Filter(nums, i => i > 1);
static int Filter(List<int> nums, Expression<Func<int, bool>> expression)
{return nums.First(i => expression.Compile()(i));
}

此时,它的结构树如下:
在这里插入图片描述

四、成品代码

在DotNetCommon.Core``已封装好了表达式树简化的方法,如下:
在这里插入图片描述
更多细节,参考:《DotNetCommon源码》

相关文章:

c#: 表达式树的简化

环境&#xff1a; .net 6 一、问题&#xff1f; 有下面的表达式&#xff1a; var nums new List<int> { 1, 2, 3 }; Expression<Func<int, bool>> exp i > i > nums.Max();我们知道&#xff0c;它其实就是&#xff1a;exp i > i > 3; 那么…...

13. UE5 RPG限制Attribute的值的范围以及生成结构体

前面几章&#xff0c;我们实现了通过GameplayEffect对Attribute值的修改&#xff0c;比如血量和蓝量&#xff0c;我们都是有一个最大血量和最大蓝量去限制它的最大值&#xff0c;而且血量和蓝量最小值不会小于零。之前我们是没有实现相关限制的&#xff0c;接下来&#xff0c;我…...

UE4运用C++和框架开发坦克大战教程笔记(十九)(第58~60集)完结

UE4运用C和框架开发坦克大战教程笔记&#xff08;十九&#xff09;&#xff08;第58~60集&#xff09;完结 58. 弹窗显示与隐藏59. UI 面板销毁60. 框架完成与总结 58. 弹窗显示与隐藏 这节课我们先来补全 TransferMask() 里对于 Overlay 布局类型面板的遮罩转移逻辑&#xff…...

ModuleNotFoundError: No module named ‘_ctypes‘报错解决方案

1、须命令安装libbffi-devel软件包&#xff1a; yum install libffi-devel -y2、安装完后再重装python3&#xff0c;无须卸载 找到之前的python3安装包&#xff0c;如果安装包删除了通过 history | grep python命令找到最初安装时的包下载的命令下载&#xff0c;保证版本一样&…...

【服务器数据恢复】服务器RAID模块硬件损坏的数据恢复案例

服务器数据恢复环境&故障&#xff1a; 某品牌服务器中有一组由数块SAS硬盘组建的RAID5磁盘阵列&#xff0c;服务器操作系统是WINDOWS SERVER&#xff0c;服务器中存放企业数据&#xff0c;无数据库文件。 服务器出故障之前出现过几次意外断电的情况&#xff0c;服务器断电…...

spring boot3x登录开发-上(整合jwt)

⛰️个人主页: 蒾酒 &#x1f525;系列专栏&#xff1a;《spring boot实战》 &#x1f30a;山高路远&#xff0c;行路漫漫&#xff0c;终有归途。 目录 前置条件 jwt简介 导依赖 编写jwt工具类 1.配置项直接嵌入代码&#xff0c;通过类名.静态方法使用 2.配置项写到…...

git 克隆拉取代码出现私钥权限问题。

问题反馈&#xff1a; rootdd:~/android/boost-1.74-for-android-r20b# git clone https://github.com/liulilittle/boost-1.74-for-android-r20b.git Cloning into boost-1.74-for-android-r20b... WARNING: UNPROTECTED PRIVATE KEY FILE! Permissions 0777 for /root/…...

【5G NR】【一文读懂系列】移动通讯中使用的信道编解码技术-卷积码原理

目录 一、引言 二、卷积编码的发展历史 2.1 卷积码的起源 2.2 主要发展阶段 2.3 重要里程碑 三、卷积编码的基本概念 3.1 基本定义 3.2 编码器框图 3.3 编码多项式 3.4 网格图(Trellis)描述 四、MATLAB示例 一、引言 卷积编码&#xff0c;作为数字通信领域中的一项…...

揭开Markdown的秘籍:标题|文字样式|列表

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;Markdown指南、网络奇遇记 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. ⛳️Markdown 标题二. ⛳️Markdown 文字样式2.1 &#x1f514;斜体2.2 &…...

移动最小二乘法

移动最小二乘法&#xff08;Moving Least Square&#xff0c;MLS&#xff09;主要应用于曲线与曲面拟合&#xff0c;该方法基于紧支撑加权函数&#xff08;即函数值只在有限大小的封闭域中定义大于零&#xff0c;而在域外则定义为零&#xff09;和多项式基函数&#xff0c;通过…...

【LeetCode】37. 解数独(困难)——代码随想录算法训练营Day30

题目链接&#xff1a;37. 解数独 题目描述 编写一个程序&#xff0c;通过填充空格来解决数独问题。 数独的解法需 遵循如下规则&#xff1a; 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。&…...

VUE学习——属性绑定

属性绑定&#xff0c;就是给html添加id、class这样类似的操作。 <template><div v-bind:id"dynamicId"><div v-bind:class"dynamicClass">Test</div></div> </template><script>export default{data(){return{…...

vue3 之 通用组件统一注册全局

components/index.js // 把components中的所组件都进行全局化注册 // 通过插件的方式 import ImageView from ./ImageView/index.vue import Sku from ./XtxSku/index.vue export const componentPlugin {install (app) {// app.component(组件名字&#xff0c;组件配置对象)…...

[Java][算法 双指针]Day 02---LeetCode 热题 100---04~07

LeetCode 热题 100---04~07 第一题&#xff1a;移动零 思路 找到每一个为0的元素 然后移到数组的最后 但是需要注意的是 要在给定的数组原地进行修改 并且其他非零元素的相对顺序不能改变 我们采用双指针法 定义两个指针i和j i和j一开始分别都在0索引位置 然后判断j所…...

【问题解决】如何将一个服务器的docker迁移到另一个服务器

要将Docker容器从一台机器迁移到另一台机器&#xff0c;可以按照以下步骤操作&#xff1a; 在机器A上提交容器为镜像&#xff1a; 使用docker commit命令将运行中的容器保存为新的镜像。这里需要容器的ID或名称&#xff0c;以及你想要命名的目标镜像名。 docker commit [容器…...

C++单例模式详解

目录 0. 前言 1. 懒汉式单例模式 1.1 最简单的单例模式 1.2 防止内存泄漏 1.2.1 智能指针的方法 1.2.2 静态嵌套的方法 1.3 保证线程安全 1.4 C11版本的优雅解决方案 2. 饿汉式单例模式 0. 前言 起因是在程序中重复声明了一个单例模式的变量&#xff0c;后来程序怎么调…...

LLM应用开发与落地:流式响应

一、背景 最近智能客服产品给到一个游戏客户那边&#xff0c;客户那边的客服负责人体验后认为我们产品回答的准确率是还是比较高的。同时&#xff0c;他反馈了几个需要改进的地方&#xff0c;其中一个就是机器人回复慢。机器人回复慢有很多原因&#xff0c;也有优化方式&#…...

神经网络 | 基于 CNN 模型实现土壤湿度预测

Hi&#xff0c;大家好&#xff0c;我是半亩花海。在现代农业和环境监测中&#xff0c;了解土壤湿度的变化对于作物生长和水资源管理至关重要。通过深度学习技术&#xff0c;特别是卷积神经网络&#xff0c;我们可以利用过去的土壤湿度数据来预测未来的湿度趋势。本文将使用 Pad…...

江科大STM32 终

目录 SPI协议10.1 SPI简介W25Q64简介10.3 SPI软件读写W25Q6410.4 SPI硬件外设读写W25Q64 BKP备份寄存器、PER电源控制器、RTC实时时钟11.0 Unix时间戳代码示例&#xff1a;读写备份寄存器BKP11.2 RTC实时时钟 十二、PWR电源控制12.1 PWR简介代码示例&#xff1a;修改主频12.3 串…...

《MySQL 简易速速上手小册》第10章:未来趋势和进阶资源(2024 最新版)

文章目录 10.1 MySQL 在云计算和容器化中的应用10.1.1 基础知识10.1.2 重点案例&#xff1a;使用 Python 部署 MySQL 到 Kubernetes10.1.3 拓展案例 1&#xff1a;在 AWS RDS 上部署 MySQL 实例10.1.4 拓展案例 2&#xff1a;使用 Docker 部署 MySQL 10.2 MySQL 和 NoSQL 的整合…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...