当前位置: 首页 > news >正文

AAAI 2024 | Adobe提出全新上下文提示学习框架CoPL,高效提升下游性能

4371db3d3c4840ec870827d18c37aa3c.png

 

论文题目:CoPL: Contextual Prompt Learning for Vision-Language Understanding
论文链接:https://arxiv.org/abs/2307.00910

提示学习(Prompt Learning)在近几年的快速发展,激活了以Transformer为基础的大型语言模型(LLM)的性能涌现。这一技术范式迅速在多模态学习等领域进行迁移,例如在CLIP跨模态对齐模型中加入可学习的Prompt,就可以在多种下游任务展现出通用性能,且具有一定的泛化能力。但这种简单的提示方法仍具有局限性,主要分为两个方面,其一是使用全局视觉特征作为提示输入可能会导致模型缺乏关注图像中前景对象的注意力能力。此外,在将提示送入到下游模块时,现有的方法对所有提示设置的权重完全相同,直观上思考,应该根据不同输入图像的内容来重新调整这一权重。

基于这两方面的局限,本文介绍一篇发表在人工智能顶级会议AAAI 2024上的文章,本文提出了一种称为上下文提示学习(Contextual Prompt Learning)的框架CoPL,CoPL可以更精确的实现提示信息与图像局部特征的对齐,为了使学习到的提示能够更好的适应到不同的下游任务中,作者设计了一种动态提示机制,从提取图像上下文特征的角度来对提示进行加权处理。本文的实验在包含few-shot和out-of-distribution等多种任务设置上进行,实验结果表明,CoPL在多模态提示学习领域已达SOTA性能。

01. 引言

传统的视觉分类任务通常需要在包含大规模类别的数据集上进行训练,例如ImageNet和OpenImages等。但是当模型在遇到一些训练分布之外的特殊图像时,就无法做出合理的预测,这种方法因为缺乏泛化性一直被学术界所诟病。研究人员开始探索如何将特定领域的知识注入到已有的模型中,使其具有一定的扩展能力。CoOp[1]方法是这一领域的先行工作,其通过引入NLP领域中提示学习的思想,通过训练可学习的提示向量来保留句子和标签之间的语义关系。但后来的一些工作指出,基于CoOp的方法具有灾难性知识遗忘的特点,同时仅采用模型的全局特征来生成提示,提示无法很好的适应到特定的下游任务中。

0f45b6bad60e4a9499f61b239c1a1a78.png

 

本文首先分析了现有框架的缺陷,相应的提出了一种上下文提示学习的改进框架CoPL,CoPL的关键思想是将提示与局部图像上下文进行对齐,如果仅使用全局特征,模型在很多few-shot和分布外的测试样本上很容易受到噪声的影响。如上图所示,CoPL首先确定图像局部上下文与哪些提示在语义上更相关,然后计算得到更合适的提示权重,通过拟合上下文信息到提示中,CoPL产生的特征会具有更强的鲁棒性和通用性

02. 本文方法

2.1 原始CLIP模型

2.2 CoOp和CoCoOp

2.3 上下文提示学习CoPL

虽然CoCoOp相比CoOp在性能方面已经获得了较大的提升,但其仍有很大的改进空间,由于 CoCoOp 使用全局特征向量来更新提示向量,因此其很难关注到图像中的局部感兴趣区域。此外,在将meta-net生成的条件向量附加到提示向量上时,CoCoOp没有体现不同区域的提示重要性。为了解决这些问题,本文提出了一种CoPL方法,CoPL方法的整体框架如下图所示。

2726049a9c624daeb41a3c85a78a027e.png

03. 实验效果

本文的实验在11个不同复杂度的图像分类数据集上进行,这些数据集主要包含通用分类数据集,例如ImageNet和Caltech-101,以及细粒度类别数据集:OxfordPets、StanfordCars、Flowers102、Food101和 FGVCAircraft。还有一些特殊领域中的标准数据集,例如场景识别、动作分类、纹理和卫星图像识别数据集。作者也选取了一些常见的CoOp变体方法作为baseline对比方法,包括CoCoOp、KgCoOp和ProGrad等。

7a6ea19c04dd4c25ab1acea89088f72a.png

 

上表展示了本文方法在上述几种数据集上的性能表现,本文作者提到,CoOp方法的主要缺点之一是其在训练分布之外的样本上表现不佳,无法很好的泛化到一些unseeen的类别上。本文的方法对这一方面进行了改进,如上表所示,CoPL在绝大多数数据集上的unseen子集上均获得了更好的分类精度。此外,我们还可以观察到,CoOp方法相比原始的CLIP方法性能有所下降,这也证明了其具有灾难性遗忘的问题

aec3492aeeb24d179fe1df1b72698e39.png

 

此外,作者在上图中进一步分析了本文提出的CoPL相比CoOp和CoCoOp方法在unseeen类别上的性能提升效果。可以看到,在行为识别数据集UCF101上,CoPL实现了将近20.6%的性能增益,而在其他语义信息较少的数据集,例如纹理数据集等,CoPL也可以得到一定的性能增益,这表明本文方法的出发点是正确的,通过对图像局部区域的注意力特征进行上下文建模,可以使得到的动态提示向量包含更多与下游任务相关的语义信息

b00edea5a49a46eabbf8f1be7967ad69.png

 

除了常规分类任务之外,本文作者还重点探索了本文方法在零样本(zero-shot)分类任务上的性能,如上表所示,首先将实验方法在简单的Caltech101数据集上进行训练,随后测试其在其他数据集上的性能,以评估方法的零样本迁移能力。从上表中可以看出,CoPL方法在大多数数据集上的表现都优于CoCoOp。虽然Caltech101是通用对象分类数据集,但是CoPL仍然能够将知识迁移到DTD数据集上来执行纹理识别任务

04. 总结

本文作者首先对现有基于提示的图像分类方法的缺陷进行了分析,即这些方法无法很好的关注到图像的局部关键信息。本文提出另一种全新的多模态提示学习方法CoPL,CoPL通过动态学习提示权重并将生成的提示向量与局部图像进行特征对齐来解决上述问题。作者通过在包含11个不同的数据集和场景中进行了完整的视觉分类实验,包括zero-shot、few-shot等不同的实验设置。实验结果表明,经过CoPL方法处理后的多模态对齐特征,具有良好的下游任务适应能力。

参考

[1] Zhou, K.; Yang, J.; Loy, C. C.; and Liu, Z. 2022b. Learning to Prompt for Vision-Language Models. Int. J. Comput. Vis., 130(9): 2337–2348.

[2] Zhou, K.; Yang, J.; Loy, C. C.; and Liu, Z. 2022a. Conditional Prompt Learning for Vision-Language Models. In CVPR.


关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区 

相关文章:

AAAI 2024 | Adobe提出全新上下文提示学习框架CoPL,高效提升下游性能

论文题目:CoPL: Contextual Prompt Learning for Vision-Language Understanding 论文链接:https://arxiv.org/abs/2307.00910 提示学习(Prompt Learning)在近几年的快速发展,激活了以Transformer为基础的大型语言模型…...

Arcgis使用过程中常见问题解决方法

Arcgis无法连接数据库/数据库连接或创建失败解决方法 最近在使用arcgis过程中出现无法连接数据库或者是无法创建数据库。连接到数据库失败;无法创建新的数据库,权限被拒绝(如下图)。 出现这个原因是你所用的电脑系统文件dao360.…...

office文件转pdf在线预览

一、工具类 package com.sby.utils;import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.InputStream; import java.math.RoundingMode; import java.text.DecimalFormat; import java.util.Locale;import com.aspose.cel…...

设计模式2-对象池模式

对象池模式,Object Pool Pattern,当你的应用程序需要频繁创建和销毁某种资源(比如数据库连接、线程、socket连接等)时,Object Pool 设计模式就变得很有用。它通过预先创建一组对象并将它们保存在池中,以便在…...

Oracle笔记-为表空间新增磁盘(ORA-01691)

如下报错: 原因是Oracle表空间满了,最好是新增一个存储盘。 #查XXX命名空间目前占用了多大的空间 select FILE_NAME,BYTES/1024/1024 from dba_data_files where tablespace_name XXXX #这里的FILE_NAME能查到DBF的存储位置#将对应的datafile设置为30g…...

【专业技术】高效并行分布式深度学习策略,助力模型训练与量化

尊敬的客户,您好!我们是一家专注于提供高效深度学习解决方案的专业团队,为您提供并行分布式策略、高效精调策略、大模型无损量化和高性能推理服务。 我们的服务包括: 并行分布式策略:我们的Trainer封装支持多种并行配…...

力扣-137. 只出现一次的数字 II

文章目录 力扣题目代码 力扣题目 给你一个整数数组 nums ,除某个元素仅出现 一次 外,其余每个元素都恰出现 三次 。请你找出并返回那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法且使用常数级空间来解决此问题。 示例 1:…...

Rust 格式化输出

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、format! 宏二、fmt::Debug三、fmt::Display四、? 操作符 循环打印 前言 Rust学习系列-本文根据教程学习Rust的格式化输出,包括fmt::Debug&…...

c#进程(Process)常用方法

在C#中,Process类提供了一系列用于操作进程的常用方法,以下是其中一些常用的方法: Start():启动一个新的进程。 Process.Start("notepad.exe");Kill():终止进程。 Process.GetProcessesByName("note…...

Vue源码系列讲解——虚拟DOM篇【三】(更新子节点)

1. 前言 在上一篇文章中,我们了解了Vue中的patch过程,即DOM-Diff算法。并且知道了在patch过程中基本会干三件事,分别是:创建节点,删除节点和更新节点。创建节点和删除节点都比较简单,而更新节点因为要处理…...

一个设备内存2M,一个1G大小的文件,这个文件有若干行,输出其中的带有hello的行以及行数

第一种 linux上的awk命令: awk {if($1 "113.111.211.224"){print $0}} temp.log 第二种:PHP程序yield ,和awk这个命令用的时间差不多一样,效率是很高的 $file __DIR__."/temp.log";foreach(readfilecong…...

json模块(高维数据的存储与读取)

json模块是 Python 标准库中的一个模块,用于处理 JSON(JavaScript Object Notation)格式的数据。JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。模块提供了在 Python 中进行 JSON 编码&…...

ONLYOFFICE文档8.0新功能浅探

ONLYOFFICE文档8.0新功能浅探 上个月末这个月初的几天,ONLYOFFICE版本更新了!更新到了一个比较整的大的版本号,8.0版本,看来这个生产力工具的升级速度基本上能保持每年两个版本号的速度,还是很快的,一般来…...

在vscode 中配置 pyside6 环境

在vscode中编写pyside环境配置 start 记录一下在 vscode 中编写 pyside6 程序,环境如何配置。 前提 请自行安装好 python。请自行安装好 vscode。安装 vscode 插件 Python,PYQT Integration。 配置环境 1.借助 pip 安装我们的pyside6 pip install…...

C语言:月份缩写

题目描述 从一月份到十二月的英文全称依次是:“January”,“February”,“March”,“April”,“May”,“June”,“July”,“August”,“September”,“October”,“November”,“December” 对应的缩写依次是:“Jan.”,“Feb.”,“Mar.”,“Apr.”,“Ma…...

线阵相机系列-- 1. 什么是线阵相机

线阵相机的概念 根据工业相机像素排列方式的不同,分为面阵相机和线阵相机。面阵相机的像素排列为一个完整的面,一次获取整幅二维图像,而线阵相机的像素以一条线排列,每次得到的图像呈现出一条线,通过设置扫描频率以及…...

CISCRISC? CPU架构有哪些? x86 ARM?

编者按:鉴于笔者水平有限,文中难免有不当之处,还请各位读者海涵。 是为序 我猜,常年混迹CSDN的同学应该不会没听说过CPU吧? 但你真的了解CPU吗?那笔者问你CPU有哪些架构呢? 如果你对你的答案…...

【C语言】(15)指针进阶

1. 指针与const 在C语言中,const关键字和指针一起使用时,可以创建对常量的引用,或者创建指向常量的指针。这对于保护重要数据不被意外修改以及提高程序的可读性和运行时的安全性非常有用。 1.1 const的基本用法 const关键字用于声明一个变…...

力扣精选算法100道—— 连续数组(前缀和专题)

连续数组&#xff08;前缀和专题&#xff09; 目录 &#x1f6a9;了解题意 &#x1f6a9;算法原理 ❗为什么hash设置成<0,-1>键值对 ❗与和为K的子数组比较hash的键值对 &#x1f6a9;代码实现 &#x1f6a9;了解题意 我们看到给定数组里面只有0和1&#xff0c;我们…...

flutter 国内源

Flutter 在中国由于网络原因&#xff0c;从官方默认的国外源下载Dart包和Flutter SDK可能会比较慢或者不稳定。为了加速依赖包的获取与Flutter SDK的安装&#xff0c;可以使用国内镜像源。以下是一些国内常用的Flutter和Dart包镜像源&#xff1a; 清华大学开源软件镜像站 Flu…...

第九个知识点:内部对象

Date对象: <script>var date new Date();date.getFullYear();//年date.getMonth();//月date.getDate();//日date.getDay();//星期几date.getHours();//时date.getMinutes();//分date.getSeconds();//秒date.getTime();//获取时间戳&#xff0c;时间戳时全球统一&#x…...

Android 车载应用开发之车载操作系统

一、前言 到 2030 年,全球电动汽车的销量将超过 7000 万辆,保有量将达到 3.8 亿辆,全球年度新车渗透率有望触及 60% 。这一数据来自国际能源署(IEA)发布的《全球电动汽车展望2023》。 市场趋势和政策努力的双加持下,新能源汽车来势凶猛,燃油车保有量逐年递减。此番景象…...

Qt PCL学习(文章链接汇总)

Qt PCL学习&#xff08;一&#xff09;&#xff1a;环境搭建 Qt PCL学习&#xff08;二&#xff09;&#xff1a;点云读取与保存 Qt PCL学习&#xff08;三&#xff09;&#xff1a;点云滤波 Qt PCL学习&#xff08;四&#xff09;&#xff1a;点云关键点 持续更新中…...

安卓动态链接库文件体积优化探索实践

背景介绍 应用安装包的体积影响着用户下载量、安装时长、用户磁盘占用量等多个方面&#xff0c;据Google Play统计&#xff0c;应用体积每增加6MB&#xff0c;安装的转化率将下降1%。 安装包的体积受诸多方面影响&#xff0c;针对dex、资源文件、so文件都有不同的优化策略&…...

[Java][算法 哈希]Day 01---LeetCode 热题 100---01~03

LeetCode 热题 100---01~03 ------->哈希 第一题 两数之和 思路 最直接的理解就是 找出两个数的和等于目标数 这两个数可以相同 但是不能是同一个数字&#xff08;从数组上理解就是内存上不是同一位置&#xff09; 解法一&#xff1a;暴力法 暴力解万物 按照需求 …...

【每日一题】LeetCode——链表的中间结点

&#x1f4da;博客主页&#xff1a;爱敲代码的小杨. ✨专栏&#xff1a;《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 ❤️感谢大家点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;&#xff0c;您的三连就是我持续更新的动力❤️ &#x1f64f;小杨水平有…...

k8s 部署java应用 基于ingress+jar包

k8 集群ingress的访问模式 先部署一个namespace 命名空间 vim namespace.yaml kind: Namespace apiVersion: v1 metadata:name: ingress-testlabels:env: ingress-test 在部署deployment deployment是pod层一层封装。可以实现多节点部署 资源分配 回滚部署等方式。 部署的…...

深度学习技巧应用36-深度学习模型训练中的超参数调优指南大全,总结相关问题与答案

大家好,我是微学AI,今天给大家介绍一下深度学习技巧应用36-深度学习模型训练中的超参数调优指南大全,总结相关问题与答案。深度学习模型训练中的调优指南大全概括了数据预处理、模型架构设计、超参数优化、正则化策略和训练技巧等多个关键方面,以提升模型性能和泛化能力。 …...

“探索AJAX:前端与后端数据交互的利器“

前言 在现代Web开发中&#xff0c;前端与后端之间的数据交互是一个至关重要的环节。为了实现无需刷新页面的动态更新&#xff0c;AJAX&#xff08;Asynchronous JavaScript and XML&#xff09;作为一种强大的技术被广泛应用。 AJAX的原理 AJAX通过JavaScript和XMLHttpReque…...

【5G NR】移动通讯中使用的信道编解码技术

目录 一、引言 二、信道编解码技术概述 三、移动通讯中常用的信道编解码技术 四、优缺点分析与比较 五、未来发展趋势 六、结论 本文主要介绍了移动通讯中采用的信道编解码技术&#xff0c;由于在5G NR终端中&#xff0c;通常要兼容4G LTE通讯技术&#xff0c;所以4G LTE…...

用Python Tkinter打造的精彩连连看小游戏【附源码】

文章目录 连连看小游戏&#xff1a;用Python Tkinter打造的精彩游戏体验游戏简介技术背景MainWindow类:职责:方法:Point类: 主执行部分:完整代码&#xff1a;总结&#xff1a; 连连看小游戏&#xff1a;用Python Tkinter打造的精彩游戏体验 在丰富多彩的游戏世界中&#xff0c…...

nvm安装node后,npm无效

类似报这种问题&#xff0c;是因为去github下载npm时下载失败&#xff0c; Please visit https://github.com/npm/cli/releases/tag/v6.14.17 to download npm. 第一种方法&#xff1a;需要复制这里面的地址爬梯子去下载&#xff08;github有时不用梯子能直接下载&#xff0c;有…...

spring boot(2.4.x 开始)和spring cloud项目中配置文件application和bootstrap加载顺序

在前面的文章基础上 https://blog.csdn.net/zlpzlpzyd/article/details/136060312 spring boot 2.4.x 版本之前通过 ConfigFileApplicationListener 加载配置 https://github.com/spring-projects/spring-boot/blob/v2.3.12.RELEASE/spring-boot-project/spring-boot/src/mai…...

5-2、S曲线计算【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】&#xff0c;查看本系列全部文章 摘要&#xff1a;本节介绍S曲线的基本变换&#xff0c;将基本形式的S曲线变换成为任意过两点的S曲线&#xff0c;为后续步进电机S曲线运动提供理论支撑 一.计算目标 ①计算经过任意不同两点的S曲线方程 ②可调节曲线平…...

SQL 注入 - http头注入之UA头注入探测

环境准备:构建完善的安全渗透测试环境:推荐工具、资源和下载链接_渗透测试靶机下载-CSDN博客 一、http头注入介绍 HTTP头注入是一种网络安全攻击手段,它利用了Web应用程序对HTTP头的处理不当或缺乏充分的验证和过滤。在这种攻击中,攻击者通过修改HTTP请求头中的某些字段,…...

学习数据结构和算法的第5天

空间复杂度及其常见案例 空间复杂度 空间复杂度也是一个数学函数表达式&#xff0c;是对一个算法在运行过程中临时占用存储空间大小的量度。 空间复杂度不是程序占用了多少bytes的空间&#xff0c;因为这个也没太大意义&#xff0c;所以空间复杂度算的是变量的个数。空间复杂度…...

Android 11 访问 Android/data/或者getExternalCacheDir() root方式

前言&#xff1a; 需求要求安装三方应用ExternalCacheDir()下载下来的apk文件。 getExternalCacheDir() : /storage/emulated/0/Android/data/com../cache/ 获取访问权限 如果手机安卓版本为Android10的时候,可以在AndroidManifest.xml中添加下列代码 android:requestLegacyExt…...

Linux探秘之旅:透彻理解路径、命令与系统概念

目录 如何远程连接 远程登录简明指南 linux区别 1.严格区分大小写 2.linux的命令返回结果判断 3.如何查看网络信息 4.关于后缀名&#xff08;Linux不关心文件后缀&#xff09; 4.1 需要记忆的后缀 5.echo命令 6.linux一切皆文件 6.1比如磁盘的文件 6.2可执行文件 …...

哈希算法 c语言

#include <stdio.h> #include <stdlib.h> #include <string.h> // 哈希函数 unsigned int hash_function(const char *str) { unsigned int hash 0; while (*str) { hash (hash * 31 *str) % 1000; str; } return hash;…...

新版MQL语言程序设计:组合模式的原理、应用及代码实现

文章目录 一、什么组合模式二、为什么需要组合模式三、组合模式的实现原理四、组合模式的应用场景五、组合模式的代码实现 一、什么组合模式 组合模式是一种结构型设计模式&#xff0c;它允许将对象组合成树形结构以表示“部分-整体”的层次结构。组合模式使得用户对单个对象和…...

代码随想录算法训练营第25天 | 216.组合总和III ,17.电话号码的字母组合

回溯章节理论基础&#xff1a; https://programmercarl.com/%E5%9B%9E%E6%BA%AF%E7%AE%97%E6%B3%95%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 216.组合总和III 题目链接&#xff1a;https://leetcode.cn/problems/combination-sum-iii/ 思路: 本题就是在[1,2,3,4,5,6,7,…...

Rust 第一个rust程序Hello Rust️

文章目录 前言一、vscode 安装rust相关插件二、Cargo New三、vscode调试rustLLDB 前言 Rust学习系列。今天就让我们掌握第一个rust程序。Hello Rust &#x1f980;️。 在上一篇文章我们在macOS成功安装了rust。 一、vscode 安装rust相关插件 以下是一些常用的 Rust 开发插件…...

高斯消去法 | LU分解 | PA=LU分解(MatLab)

一、问题描述 利用高斯消去法&#xff0c;LU 分解及PALU 分解求解非线性方程组。 二、实验目的 掌握高斯消去法、LU 分解、PALU 分解的算法原理&#xff1b;编写代码实现利用高斯消去法、LU 分解、PALU 分解来求解线性方程组。 三、实验内容及要求 1. 利用顺序高斯消去法求…...

Linux笔记之expect和bash脚本监听输出并在匹配到指定字符串时发送中断信号

Linux笔记之expect和bash脚本监听输出并在匹配到指定字符串时发送中断信号 code review! 文章目录 Linux笔记之expect和bash脚本监听输出并在匹配到指定字符串时发送中断信号1.expect2.bash 1.expect 在Expect脚本中&#xff0c;你可以使用expect来监听程序输出&#xff0c;…...

项目02《游戏-12-开发》Unity3D

基于 项目02《游戏-11-开发》Unity3D &#xff0c; 任务&#xff1a;实现场景怪物自动巡航 &#xff0c; 首先在场景中创建小球命名为路径点WayPoint0&#xff0c; 取消小球的碰撞器Collider&#xff0c; 再复制两个改名为WayPoint1 和 WayPoint2 &#xff0c; 在…...

记一次面试题

1.Php 私有化包&#xff08;composer&#xff09;的部署 1. 创建你的PHP包 确定你的包的功能和命名空间。 创建一个新的目录并初始化一个Git仓库。 使用composer init命令创建一个composer.json文件&#xff0c;并定义你的包名、版本、依赖等信息。 2. 开发并测试你的包 在本地…...

Rust入门2——随机数

文章目录 一、生成随机数二、比较两个数相等 简单列出两个Rust的小例子 一、生成随机数 在Cargo.toml的dependencies中引入rand&#xff0c;指定rand的版本 [dependencies] rand "^0.3.14"之后在主函数中调用rand函数&#xff0c;生成随机数 use rand::Rng; f…...

c#: 表达式树的简化

环境&#xff1a; .net 6 一、问题&#xff1f; 有下面的表达式&#xff1a; var nums new List<int> { 1, 2, 3 }; Expression<Func<int, bool>> exp i > i > nums.Max();我们知道&#xff0c;它其实就是&#xff1a;exp i > i > 3; 那么…...

13. UE5 RPG限制Attribute的值的范围以及生成结构体

前面几章&#xff0c;我们实现了通过GameplayEffect对Attribute值的修改&#xff0c;比如血量和蓝量&#xff0c;我们都是有一个最大血量和最大蓝量去限制它的最大值&#xff0c;而且血量和蓝量最小值不会小于零。之前我们是没有实现相关限制的&#xff0c;接下来&#xff0c;我…...

UE4运用C++和框架开发坦克大战教程笔记(十九)(第58~60集)完结

UE4运用C和框架开发坦克大战教程笔记&#xff08;十九&#xff09;&#xff08;第58~60集&#xff09;完结 58. 弹窗显示与隐藏59. UI 面板销毁60. 框架完成与总结 58. 弹窗显示与隐藏 这节课我们先来补全 TransferMask() 里对于 Overlay 布局类型面板的遮罩转移逻辑&#xff…...