Seurat - 聚类教程 (1)
设置 Seurat 对象
在本教程[1]中,我们将分析 10X Genomics 免费提供的外周血单核细胞 (PBMC) 数据集。在 Illumina NextSeq 500 上对 2,700 个单细胞进行了测序。可以在此处[2]找到原始数据。
我们首先读取数据。 Read10X() 函数从 10X 读取 cellranger 管道的输出,返回唯一的分子识别 (UMI) 计数矩阵。该矩阵中的值表示在每个细胞(列)中检测到的每个特征(即基因;行)的分子数量。请注意,较新版本的 cellranger 现在也使用 h5 文件格式进行输出,可以使用 Seurat 中的 Read10X_h5() 函数读取该格式。
接下来我们使用计数矩阵来创建 Seurat 对象。该对象充当容器,其中包含单细胞数据集的数据(如计数矩阵)和分析(如 PCA 或聚类结果)。例如,在 Seurat v5 中,计数矩阵存储在 pbmc[["RNA"]]$counts 中。
library(dplyr)
library(Seurat)
library(patchwork)
# Load the PBMC dataset
pbmc.data <- Read10X(data.dir = "/brahms/mollag/practice/filtered_gene_bc_matrices/hg19/")
# Initialize the Seurat object with the raw (non-normalized data).
pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)
pbmc
-
输出
## An object of class Seurat
## 13714 features across 2700 samples within 1 assay
## Active assay: RNA (13714 features, 0 variable features)
## 1 layer present: counts
-
示例
# Lets examine a few genes in the first thirty cells
pbmc.data[c("CD3D", "TCL1A", "MS4A1"), 1:30]
# 输出
## 3 x 30 sparse Matrix of class "dgCMatrix"
##
## CD3D 4 . 10 . . 1 2 3 1 . . 2 7 1 . . 1 3 . 2 3 . . . . . 3 4 1 5
## TCL1A . . . . . . . . 1 . . . . . . . . . . . . 1 . . . . . . . .
## MS4A1 . 6 . . . . . . 1 1 1 . . . . . . . . . 36 1 2 . . 2 . . . .
矩阵中.的值代表 0(未检测到分子)。由于 scRNA-seq 矩阵中的大多数值都是 0,因此 Seurat 只要有可能就使用稀疏矩阵表示。这会显著节省 Drop-seq/inDrop/10x 数据的内存和速度。
dense.size <- object.size(as.matrix(pbmc.data))
dense.size
## 709591472 bytes
sparse.size <- object.size(pbmc.data)
sparse.size
## 29905192 bytes
dense.size/sparse.size
## 23.7 bytes
预处理
以下步骤涵盖 Seurat 中 scRNA-seq 数据的标准预处理工作流程。这些基于 QC 指标、数据标准化和缩放以及高度可变特征的检测的细胞选择和过滤。
Seurat 允许您轻松探索 QC 指标并根据任何用户定义的标准过滤细胞。常用的一些 QC 指标包括:
-
每个细胞中检测到的唯一(unique)基因的数量 -
低质量的细胞或空液滴通常含有很少的基因 -
细胞双联体或多联体可能表现出异常高的基因计数
-
-
同样,细胞内检测到的分子总数(与唯一(unique)基因密切相关) -
映射到线粒体基因组的读数百分比 -
低质量/垂死细胞通常表现出广泛的线粒体污染 -
我们使用 PercentageFeatureSet() 函数计算线粒体 QC 指标,该函数计算源自一组特征的计数百分比 -
我们使用以 MT- 开头的所有基因的集合作为线粒体基因的集合
-
# The [[ operator can add columns to object metadata. This is a great place to stash QC stats
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
-
Seurat 中的 QC 指标存储在哪里?
在下面的示例中,我们将 QC 指标可视化,并使用它们来过滤细胞。
我们过滤具有唯一特征计数超过 2,500 或少于 200 的细胞;我们过滤线粒体计数 >5% 的细胞
# Visualize QC metrics as a violin plot
VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
# FeatureScatter is typically used to visualize feature-feature relationships, but can be used
# for anything calculated by the object, i.e. columns in object metadata, PC scores etc.
plot1 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "percent.mt")
plot2 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
plot1 + plot2
pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
未完待续,持续关注!
Source: https://zenghensatijalab.org/seurat/articles/pbmc3k_tutorial
[2]data: https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
本文由 mdnice 多平台发布
相关文章:
Seurat - 聚类教程 (1)
设置 Seurat 对象 在本教程[1]中,我们将分析 10X Genomics 免费提供的外周血单核细胞 (PBMC) 数据集。在 Illumina NextSeq 500 上对 2,700 个单细胞进行了测序。可以在此处[2]找到原始数据。 我们首先读取数据。 Read10X() 函数从 10X 读取 cellranger 管道的输出&…...
Mac 版 Excel 和 Windows 版 Excel的区别
Excel是一款由微软公司开发的电子表格程序,广泛应用于数据处理、分析和可视化等领域。它提供了丰富的功能和工具,包括公式、函数、图表和数据透视表等,帮助用户高效地处理和管理大量数据。同时,Excel还支持与其他Office应用程序的…...
【报错解决】-bash: export: `-8‘: not a valid identifier 不是有效的标识符
现象 一登陆就提示-bash: export: -8’: not a valid identifier 不是有效的标识符 问题出现的原因 设置字符集时多写了空格 [rootdb1 ~]# cat >>/etc/profile<<EOF export LANGen_US.UTF -8(-8前不应有空格) EOF 解决方法 cd /etc vi profile 把export带有-8的…...
Docker-Learn(三)创建镜像Docker(换源)
根据之前的内容基础,本小点的内容主要涉及到的内容是比较重要的文本Dockerfile 1. 编辑Dockerfile 启动命令行终端(在自己的工作空间当中),创建和编辑Dockerfile。 vim Dockerfile然后写入以下内容 # 使用一个基础镜像 FROM ubuntu:late…...
「递归算法」:二叉树剪枝
一、题目 给你二叉树的根结点 root ,此外树的每个结点的值要么是 0 ,要么是 1 。 返回移除了所有不包含 1 的子树的原二叉树。 节点 node 的子树为 node 本身加上所有 node 的后代。 示例 1: 输入:root [1,null,0,0,1] 输出&…...
Kafka下载(kafka和jdk、zookeeper、SpringBoot的版本对应关系)
文章目录 一、准备工作1、必须环境2、kafka使用自带的zookeeper还是自己单独部署zookeeper?二、下载一、准备工作 1、必须环境 kafka本身的开发语言是Scala,而Scala是基于jdk开发的,所以要先安装jdk kafka版本jdk版本kafka使用jdk版本官网说明1.0建议使用1.8https://kafka.…...
自然语言NLP
什么是NLP NLP(Natural Language Processing)是自然语言处理的缩写,是计算机科学和人工智能领域的一个研究方向。NLP致力于使计算机能够理解、处理和生成人类自然语言的能力。通过NLP技术,计算机可以通过识别和理解语言中的文本…...
容器库(5)-std::list
std::forward_list是可以从任何位置快速插入和移除元素的容器,不支持快速随机访问,支持正向和反向的迭代。 本文章的代码库: https://gitee.com/gamestorm577/CppStd 成员函数 构造、析构和赋值 构造函数 可以用元素、元素列表、迭代器…...
配置VMware实现从服务器到虚拟机的一键启动脚本
正文共:1666 字 15 图,预估阅读时间:2 分钟 首先祝大家新年快乐!略备薄礼,18000个红包封面来讨个开年好彩头! 虽然之前将服务器放到了公网(成本增加了100块,内网服务器上公网解决方案…...
第5讲小程序微信用户登录实现
小程序微信用户登录实现 小程序登录和jwt,httpclient工具类详细介绍可以看下小锋老师的 小程序电商系统课程:https://www.bilibili.com/video/BV1kP4y1F7tU application.yml加上小程序登录需要的参数,小伙伴们可以登录小程序后台管理&#…...
Kong 负载均衡
负载均衡是一种将API请求流量分发到多个上游服务的方法。负载均衡可以提高整个系统的响应速度,通过防止单个资源过载而减少故障。 在以下示例中,您将使用部署在两台不同服务器或上游目标上的应用程序。Kong网关需要在这两台服务器之间进行负载均衡&…...
基于Chrome插件的Chatgpt对话无损导出markdown格式(Typora完美显示)
Google插件名称为:ChatGPT to MarkDown plus, 下载地址为ChatGPT to MarkDown plus使用方法:见GitHub主页或插件介绍页面https://github.com/thisisbaiy/ChatGPT-To-Markdown-google-plugin/tree/main 我将源代码上传至了GitHub,欢迎star, Is…...
react函数组件中使用context
效果 1.在父组件中创建一个createcontext并将他导出 import React, { createContext } from react import Bpp from ./Bpp import Cpp from ./Cpp export let MyContext createContext(我是组件B) export let Ccontext createContext(我是组件C)export default function App…...
【MATLAB源码-第137期】基于matlab的NOMA系统和OFDMA系统对比仿真。
操作环境: MATLAB 2022a 1、算法描述 NOMA(非正交多址)和OFDMA(正交频分多址)是两种流行的无线通信技术,广泛应用于现代移动通信系统中,如4G、5G和未来的6G网络。它们的设计目标是提高频谱效…...
【FPGA Verilog】各种加法器Verilog
1bit半加器adder设计实例 module adder(cout,sum,a,b); output cout; output sum; input a,b; wire cout,sum; assign {cout,sum}ab; endmodule 解释说明 (1)assign {cout,sum}ab 是连续性赋值 对于线网wire进行赋值,必须以assign或者dea…...
【MySQL】-21 MySQL综合-7(MySQL主键+MySQL外检约束+MySQL唯一约束+MySQL检查约束)
MySQL主键MySQL外检约束MySQL唯一约束MySQL检查约束 MySQL主键选取设置主键约束的字段在创建表时设置主键约束在创建表时设置复合主键在修改表时添加主键约束 MySQL外键约束选取设置 MySQL 外键约束的字段在创建表时设置外键约束在修改表时添加外键约束删除外键约束 MySQL唯一约…...
【大厂AI课学习笔记】【1.6 人工智能基础知识】(3)神经网络
深度学习是机器学习中一种基于对数据进行表征学习的算法。观测值(例如一幅草莓照片)可以使用 多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。 深度学习的最主要特征是使用神经网络作为计算模型。神经网络模型 …...
指针的基本含义及其用法
1.前言 在学习C语言的时候,我们会经常接触一个概念,指针和地址,关于这两个概念很多人并不能理解地十分透彻,接下来我将详细介绍一下这两者的概念 2.地址 我们知道计算机的上CPU(中央处理器)在处理数据的时…...
黄金交易策略(Nerve Nnife.mql4):趋势做单
完整EA:Nerve Knife.ex4黄金交易策略_黄金趋势ea-CSDN博客 当大小趋势相同行情走向也相同,就会开仓做顺势单,并会顺势追单,以达到快速止盈平仓的效果。大趋势追求稳定,小趋势追求敏捷,行情走向比小趋势更敏…...
HiveSQL——条件判断语句嵌套windows子句的应用
注:参考文章: SQL条件判断语句嵌套window子句的应用【易错点】--HiveSql面试题25_sql剁成嵌套判断-CSDN博客文章浏览阅读920次,点赞4次,收藏4次。0 需求分析需求:表如下user_idgood_namegoods_typerk1hadoop1011hive1…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
