当前位置: 首页 > news >正文

【正在更新】从零开始认识语音识别:DNN-HMM混合系统语音识别(ASR)原理

摘要 | Abstract

        这是一篇对语音识别中的一种热门技术——DNN-HMM混合系统原理的透彻介绍。本文自2月10日开始撰写,计划一星期内写完。

1.前言 | Introduction

        近期想深入了解语音识别(ASR)中隐马尔可夫模型(HMM)和深度神经网络-隐马尔可夫(DNN-HMM)混合模型,但是尽管网络上有许多关于DNN-HMM的介绍,如李宏毅教授的《深度学习人类语言处理》[1],一些博主的语音识别系列文章[2],斯坦福大学HMM课件[3]。但是这些材料要么不够细致完备,要么对初学者来说过于复杂深奥(尤以HMM部分的琳琅满目的概率公式为首)。

        因此,笔者在阅读了大量相关资料后希望用深入浅出的方式为大家系统地介绍DNN-HMM混合模型。本文旨在为零基础者从头解析使用DNN-HMM混合方法的语音识别系统的底层原理

        笔者希望让仅仅具备本科概率论基础的人也能读懂,如果你符合这个条件但仍觉得理解起来困难,你可以留下你的疑惑,以帮助我们改进文章。

        

2.问题描述 | Problem Statement

        我们直入主题,语音识别模型是这样一个模型,它将一串语音信号X(如一个仅包含语音的.wav音频文件)作为模型的输入,目的在于输出一个与之最为匹配的文字内容\hat{Y}(为了简化问题,本文只考虑英文场景,其它语言原理基本类似)。其中,当我们说“最为匹配”的时候,我们主要考虑的是“最有可能”的,亦即,语音识别模型希望在给定X时,给出\hat{Y},使得:

\hat{Y}=argmax_{Y}\{P(Y|X)\}

上式意味着,我们要找使得P(Y|X)最大的Y,记作\hat{Y}
        要解决这个问题,一个最直观的办法就是穷举所有可能的Y,然后比一比他们的概率P(Y|X),再选出最大的那一个。显然这个想法是不现实的,因为所有可能的Y也许是一个无穷的集合。再者,就算能够缩小范围,枚举出大量比较可能的候选Y,又如何比较概率P(Y|X)的大小呢?因而枚举法似乎不是好的选择。

        HMM类的方法则选择使用贝叶斯理论对概率进行处理,这我们在后面会详细说明。在此之前,笔者想为大家简单讲讲其它的更清晰的解决思路。

3.相关研究 | Related Work

        得益于今日神经网络技术的快速发展,熟悉深度学习的我们很容易联想到,似乎只要利用大量的音频以及对应的文本标注进行训练,不需要额外的人工处理应该也能做到很好的泛化能力(即拿到新的语音信号时可以准确地给出真实的文字答案)吧?

        答案是:确实有,这种办法被称为Listen Attend, and Spell,简称LAS[4]。它使用一个深度学习模型,直接用声音信号和人工标记的文字训练,在推理时听到新的声音信号就能给出它认为最匹配的文字内容。由于直接输入音频信号X就能推理出其中的文字\hat{Y},LAS被归为端到端(End to End)模型。

        不得不说,LAS这种方法确实是最符合(机器学习研究者的)直觉的,就像其它任何的机器学习任务(如图像识别)一样,训练和推理再好理解不过了。

        除了即将要介绍的HMM类模型,LAS、Transformer[5],还有CTC[6],RNN-T[7]等。这些内容不是本文的重点,就不一一介绍了。

        尽管LAS等端到端模型操作非常简单无脑,但是在过去的很长一段时间内,这些堪称暴力的方法并没有想象中的那么强。至少在2020年时,商业语音识别系统的主力军还是咱们今天文章的主角DNN-HMM[1],同时DNN-HMM模型也是第一个被宣称达到人类同级别语音识别水平的模型[8]。接下来我们就要展开介绍HMM类模型:GMM-HMM系统和DNN-HMM混合系统。

4.方法 | Method

        前文提到,语音识别的任务可以简化为概率问题——在给定X时,给出\hat{Y},使得:

\hat{Y}=argmax_{Y}\{P(Y|X)\}

由于不好直接求得P(Y|X)以进行比较,但在HMM系统中,我们可以对人说话的发音方式建模(这部分在后文会详细介绍),进而容易得到的是P(X|Y)。故我们引入贝叶斯公式将上式反转,即作以下变型:

\hat{Y}=argmax_{Y}\{P(Y|X)\}=argmax_{Y}\{\frac{P(X|Y)P(Y)}{P(X)}\}

其中由于去掉分母P(X)不影响分式的大小比较,上式又等价于求:

\hat{Y}=argmax_{Y}\{P(X|Y)P(Y)) \}

       这其中,我们P(X|Y)声学模型(Acoustic Model),称P(Y)语言模型(Language Model)。(对,就是Chat GPT一类的语言模型)

        这样,我们就将不容易估计的概率转变成容易估计的概率。接下来我们简要解释声学模型和语言模型的含义,以及为什么说他们容易估计。

4.1.声学模型与语言模型

        首先是声学模型P(X|Y),按字面意思理解,它就是给定文字内容Y,其对应发音结果为音频X的概率。这个过程是一个正向的过程,是较好估计的。举一个不那么恰当的例子,如在中文里,文字“朝阳”对应的发声结果中,发出类似于“cháo yáng”或者“zhāo yáng”的概率是比较大的,但发出任何其它的声音的概率都是比较小的。笔者认为,这也是该概率被称为“声学模型”的原因,因为它描述的是“念”某一文字发出某一声音的概率,即某文字的“发声概率”。

        以上的例子只是为了简要说明“声学模型”的内涵而并不具有严谨性,对于某一文字内容对应应该发出什么声音,应考虑更全面更深入的因素,而通过拼音的方式进行描述是抽象而模糊的。事实上,HMM正是声学模型,其提出者将文字的发音过程简化作一个隐马尔可夫模型。这部分内容我们会在后文详细介绍,在此不多赘述。

        至于语言模型P(Y),则是用于描述某一文字Y出现的概率,也代表其出现的合理性。如在英文里的经典例子,“识别语音”的英文“recognize speech”和“毁坏一个好沙滩”的英文“wreck a nice beach”的发音是一模一样的。但是,由于后者的词语搭配缺乏合理性(也可理解为在大量的各类文字材料中后者出现的频率小得多),其概率P(Y)也小得多,故在二者的声学模型取值相同(因为发音完全一样)的情况下,“recognize speech”是具有更高可能的识别结果。在实践中,我们会统计各词语在各种语境(上下文环境)中出现的频率,作为语言模型使用。时常,这样的统计还不足够令人满意,我们也会从逻辑的角度出发对目标材料进行合理扩展。另外,作为评判文字出现合理性的语言模型,成果缔造了Chat GPT这类能生成很多“合理”对话的聊天机器人。由于语言模型不是行文的重点,我们推荐有兴趣的读者查阅语言模型的其它相关材料,不再拓展阐述。

        值得一提的是,即便是对于LAS之类的端到端模型,也即没有使用贝叶斯公式变换出P(Y)这一式子,而是直接求解原问题\hat{Y}=argmax_{Y}\{P(Y|X)\}的模型,也会引入语言模型P(Y),即LAS等模型在实际上会求解\hat{Y}=argmax_{Y}\{P(Y|X)P(Y)\}。尽管这一表达式缺乏逻辑,但在实践中却能起到可观的效果,其原因可能在于这些模型本身不能很好地估计P(Y|X),因而来自语言模型的修正可以生效[1]。

        回到语音识别的问题上来,我们的目标是找到使得声学模型P(X|Y)和语言模型P(Y)相乘最大的Y。换一个角度理解:语言模型可以基于声学模型所生成的词组的合理性对语音识别结果进行重打分(rescoring),以帮助改进识别质量。

4.2.声学模型的构建:GMM-HMM系统

        前文已经提到,在搭建声学模型P(X|Y)的过程中,我们引入了HMM模型,其原因在于可以将发声的过程看作是是隐马尔可夫过程。但是在深入分析HMM相关内容之前,为了叙述逻辑的通畅,我们还是先从P(X|Y)这一式子讲起。

        当我们想进一步探讨P(X|Y)这一式子时,第一个难题立马扑面而来:文本先不提,这个音频也太复杂了点。须知,在概率论里面,我们最喜欢的就是(1)意义明确的、(2)情况可能有限且尽量少的问题(如明天是否下雨这个问题就很好估计,因为情况少而且每种情况有明确的意义)。

        但是作为音频的语音信号,即便是在进行数字采样(在这里,我们假定读者已经了解音频数字采样的知识)后,每分钟的语音也至少有:

(1信道) x (8,000赫兹采样率) x (2 ^ 16种信号强度)= 524,288,000 种可能情况

        再加上音频的每一个数值只是代表信号在那个时间点的强度(振幅),没有什么实际的参考意义,因为不能直接和文字信息对应上。

        综上,我们需要一种降维+特征提取的手段,这就是音频分帧和特征提取。

4.2.1.预处理语音:音频分帧与特征提取

        特征提取的目的是降维和赋予数据意义,而分帧则是特征提取的前提。音频分帧就是将音频X切片,分为一小段一小段的内容,一个小段就是一帧(frame)。分好后再对每一帧分别进行特征提取。

        在实践中,我们通常会每10ms取一个帧,一个帧的长度是25ms。当然这意味着相邻的帧之间会有重叠。

图1 对语音信号进行分帧,图源[1]

       

        对于每个分好的帧,(对8k赫兹采样率来说)具有25ms x 8,000Hz=200个采样点,我们对这些采样点进行特征提取。需要提取什么特征呢?有一点很重要的启发就是:人对声音的音高是非常敏感的。因此,我们可以在音高上做文章,用傅里叶变换把每一帧中各个音高的能量表达出来。当然,这还不够,由于人耳在声音提取上是有偏好的,即对不同音高的灵敏度不同,于是人们依据经验设计了一种考虑这个因素的特征表示方法:梅尔倒频谱系数(MFCC)。

        在这里,我们不介绍MFCC的具体提取流程,只说明其结果是:将每一帧的音频内容转换为一个39维的向量,这39位数字,代表了39个人耳非常敏感的频段上的强度。

图2 音频信号分帧与MFCC特征提取过程,图源[9]
图3 音频信号MFCC特征提取结果,图源[9]

        于是,通过MFCC,我们就达到了降维(200+维至39维)和特征提取(39个人耳敏感频段强度)的效果。

4.2.2.预处理文本:音素、三音和状态

        将语音信号简化后还不够,

TO-BE-CONTINUED

参考资料

[1] 国立台湾大学李宏毅 (Hung-yi Lee)教授DLHLP2020课程,原网址:Hung-yi Lee (ntu.edu.tw) ,B站搬运Speech Recognition (Option) - HMM_哔哩哔哩_bilibili

[2] AI大道理 - AI大语音(十三)——DNN-HMM (深度解析)-CSDN博客

[3] Stanford University EE365: Hidden Markov Models  hmm.pdf (stanford.edu)

[4] W. Chan, N. Jaitly, Q. Le and O. Vinyals, "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016, pp. 4960-4964, doi: 10.1109/ICASSP.2016.7472621.

[5] Linhao Dong, Shuang Xu, and Bo Xu. "Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition."2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.

[6] Graves, Alex & Fernández, Santiago & Gomez, Faustino & Schmidhuber, Jürgen. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural 'networks. ICML 2006 - Proceedings of the 23rd International Conference on Machine Learning. 2006. 369-376. 10.1145/1143844.1143891. 

[7] Graves, Alex. “Sequence Transduction with Recurrent Neural  Networks.”  2012 ArXiv abs/1211.3711

[8] W. Xiong et al., "Toward Human Parity in Conversational Speech Recognition," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 12, pp. 2410-2423, Dec. 2017, doi: 10.1109/TASLP.2017.2756440. 

[9] Ele实验室 - 【语音识别技术】重度鉴赏 

相关文章:

【正在更新】从零开始认识语音识别:DNN-HMM混合系统语音识别(ASR)原理

摘要 | Abstract 这是一篇对语音识别中的一种热门技术——DNN-HMM混合系统原理的透彻介绍。本文自2月10日开始撰写,计划一星期内写完。 1.前言 | Introduction 近期想深入了解语音识别(ASR)中隐马尔可夫模型(HMM)和深度神经网络-隐马尔可夫(DNN-HMM)混合模型&#…...

thinkphp+vue企业产品展示网站f7enu

本文首先介绍了企业产品展示网站管理技术的发展背景与发展现状,然后遵循软件常规开发流程,首先针对系统选取适用的语言和开发平台,根据需求分析制定模块并设计数据库结构,再根据系统总体功能模块的设计绘制系统的功能模块图&#…...

在Ubuntu22.04上部署ComfyUI

ComfyUI 是 一个基于节点流程的 Stable Diffusion 操作界面,可以通过流程,实现了更加精准的工作流定制和完善的可复现性。每一个模块都有特定的的功能,我们可以通过调整模块连接达到不同的出图效果,特点如下: 1.对显存…...

Springboot+vue的社区养老服务平台(有报告)。Javaee项目,springboot vue前后端分离项目

演示视频: Springbootvue的社区养老服务平台(有报告)。Javaee项目,springboot vue前后端分离项目 项目介绍: 本文设计了一个基于Springbootvue的前后端分离的社区养老服务平台,采用M(model&…...

计算机设计大赛 深度学习+opencv+python实现车道线检测 - 自动驾驶

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV56 数据集处理7 模型训练8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 &am…...

机器学习2---逻辑回归(基础准备)

逻辑回归是基于线性回归是直线分的也可以做多分类 ## 数学基础 import numpy as np np.pi # 三角函数 np.sin() np.cos() np.tan() # 指数 y3**x # 对数 np.log10(10) np.log2(2) np.e np.log(np.e) #ln(e)# 对数运算 # log(AB) log(A) logB np.log(3*4)np.log(3)np.log(4) #…...

JVM体系

JVM是一种虚拟的计算机,它模拟了一个完整的硬件系统,并运行在一个完全隔离的环境中。这意味着JVM可以看作是一个在操作系统之上的计算机系统,与VMware、Virtual Box等虚拟机类似。JVM的设计目标是提供一个安全、可靠、高效且跨平台的运行环境…...

.NET命令行(CLI)常用命令

本文用于记录了.NET软件开发全生命周期各阶段常用的一些CLI命令,用于开发速查。 .NET命令行(CLI)常用命令 项目创建(1)查看本机SDK(2)查看本机可以使用的.NET版本(3)生成…...

六、Redis之数据持久化及高频面试题

6.1 数据持久化 官网文档地址:https://redis.io/docs/manual/persistence/ Redis提供了主要提供了 2 种不同形式的持久化方式: RDB(Redis数据库):RDB 持久性以指定的时间间隔执行数据集的时间点快照。AOF&#xff0…...

爬虫——ajax和selenuim总结

为什么要写这个博客呢,这个代码前面其实都有,就是结束了。明天搞个qq登录,这个就结束了。 当然也会更新小说爬取,和百度翻译,百度小姐姐的爬取,的对比爬取。总结嘛!!!加…...

【Python】单元测试unittest框架

note 使用unittest框架进行单元测试是Python标准库的一部分,提供了编写测试用例、测试套件以及运行测试的能力。测试用例是继承自unittest.TestCase的类。在这个类中,你可以定义一系列的方法来测试不同的行为。每个测试方法都应该以test开头。 文章目录…...

(三十七)大数据实战——Solr服务的部署安装

前言 Solr是一个基于Apache Lucene的开源搜索平台,它提供了强大的全文搜索、分布式搜索和数据分析功能。Solr 可以用于构建高性能的搜索应用程序,支持从海量数据中快速检索和分析信息。Solr 使用倒排索引和先进的搜索算法,可实现快速而准确的…...

在Ubuntu22.04上部署FoooCUS2.1

Fooocus 是一款基于 Gradio的图像生成软件,Fooocus 是对 Stable Diffusion 和 Midjourney 设计的重新思考: 1、从 Stable Diffusion 学习,该软件是离线的、开源的和免费的。 2、从 Midjourney 中学到,不需要手动调整,…...

详解C语言中的野指针和assert断言

目录 1.野指针1.1 野指针成因1.1.1 指针未初始化1.1.2 指针越界访问1.1.3 指针指向的空间释放 1.2 如何规避野指针1.2.1 指针初始化1.2.2 小心指针越界1.2.3 指针变量不再使用时,及时置为NULL,指针使用之前检查1.2.4 避免返回局部变量的地址 2.assert断言…...

Vue源码系列讲解——模板编译篇【四】(文本解析器)

1. 前言 在上篇文章中我们说了,当HTML解析器解析到文本内容时会调用4个钩子函数中的chars函数来创建文本型的AST节点,并且也说了在chars函数中会根据文本内容是否包含变量再细分为创建含有变量的AST节点和不包含变量的AST节点,如下&#xff…...

微信小程序开发学习笔记《17》uni-app框架-tabBar

微信小程序开发学习笔记《17》uni-app框架-tabBar 博主正在学习微信小程序开发,希望记录自己学习过程同时与广大网友共同学习讨论。建议仔细阅读uni-app对应官方文档 一、创建tabBar分支 运行如下的命令,基于master分支在本地创建tabBar子分支&#x…...

《区块链公链数据分析简易速速上手小册》第5章:高级数据分析技术(2024 最新版)

文章目录 5.1 跨链交易分析5.1.1 基础知识5.1.2 重点案例:分析以太坊到 BSC 的跨链交易理论步骤和工具准备Python 代码示例构思步骤1: 设置环境和获取合约信息步骤2: 分析以太坊上的锁定交易步骤3: 跟踪BSC上的铸币交易 结论 5.1.3 拓展案例 1:使用 Pyth…...

【芯片设计- RTL 数字逻辑设计入门 15 -- 函数实现数据大小端转换】

文章目录 函数实现数据大小端转换函数语法函数使用的规则Verilog and Testbench综合图VCS 仿真波形 函数实现数据大小端转换 在数字芯片设计中,经常把实现特定功能的模块编写成函数,在需要的时候再在主模块中调用,以提高代码的复用性和提高设…...

Codeforces Round 925 (Div. 3) D. Divisible Pairs (Java)

Codeforces Round 925 (Div. 3) D. Divisible Pairs (Java) 比赛链接:Codeforces Round 925 (Div. 3) D题传送门:D.Divisible Pairs 题目:D.Divisible Pairs 题目描述 输出格式 For each test case, output a single integer — the num…...

【C语言】实现单链表

目录 (一)头文件 (二)功能实现 (1)打印单链表 (2)头插与头删 (3)尾插与尾删 (4) 删除指定位置节点 和 删除指定位置之后的节点 …...

Hive调优——合并小文件

目录 一、小文件产生的原因 二、小文件的危害 三、小文件的解决方案 3.1 小文件的预防 3.1.1 减少Map数量 3.1.2 减少Reduce的数量 3.2 已存在的小文件合并 3.2.1 方式一:insert overwrite (推荐) 3.2.2 方式二:concatenate 3.2.3 方式三&#xff…...

设计模式(行为型模式)责任链模式

目录 一、简介二、责任链模式2.1、处理器接口2.2、具体处理器类2.3、使用 三、优点与缺点 一、简介 责任链模式(Chain of Responsibility Pattern)是一种行为设计模式,允许你将请求沿着处理者链进行传递,直到有一个处理者能够处理…...

HTTP和HTTPS区别!

http 是我们几乎天天都要打交道的东西,相关知识点有点多,所以也有不少面试必问的点,这里做了一些整理,帮且大家树立完整的 http 知识体系,对面试官说 so easy HTTP 的特点和缺点 特点:无连接、无状态、灵…...

麻将普通胡牌算法(带混)

最近在玩腾讯的麻将游戏,但是经常需要充值,于是就想自己实现一个简单的单机麻将游戏.第一个难点就是实现胡牌的判断.这里写一下心得. 术语 本文的胡牌是指手牌构成了3N2的牌型,即一对做将,剩下的牌均为刻子(3张一样的牌)或者顺子(3张连续的牌比如234饼). 下面就是一个14张牌…...

Rust结构体详解:定义、使用及方法

Rust 是一门强调安全性和性能的系统级编程语言,它引入了结构体(struct)作为一种自定义的数据类型,允许程序员以更加灵活的方式组织和操作数据。在本篇博客中,我们将深入探讨 Rust 结构体的定义、使用以及相关概念。 什…...

LeetCode、435. 无重叠区间【中等,贪心 区间问题】

文章目录 前言LeetCode、435. 无重叠区间【中等,贪心 区间问题】题目链接及分类思路贪心、区间问题 资料获取 前言 博主介绍:✌目前全网粉丝2W,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技…...

【实战】一、Jest 前端自动化测试框架基础入门(三) —— 前端要学的测试课 从Jest入门到TDD BDD双实战(三)

文章目录 一、Jest 前端自动化测试框架基础入门7.异步代码的测试方法8.Jest 中的钩子函数9.钩子函数的作用域 学习内容来源:Jest入门到TDD/BDD双实战_前端要学的测试课 相对原教程,我在学习开始时(2023.08)采用的是当前最新版本&a…...

信息学奥赛一本通1228:书架

1228:书架 时间限制: 1000 ms 内存限制: 65536 KB 提交数: 18190 通过数: 10557 【题目描述】 John最近买了一个书架用来存放奶牛养殖书籍,但书架很快被存满了,只剩最顶层有空余。 John共有N�头奶牛(1≤N≤20,0001≤…...

红队打靶练习:GLASGOW SMILE: 1.1

目录 信息收集 1、arp 2、nmap 3、nikto 4、whatweb 目录探测 1、gobuster 2、dirsearch WEB web信息收集 /how_to.txt /joomla CMS利用 1、爆破后台 2、登录 3、反弹shell 提权 系统信息收集 rob用户登录 abner用户 penguin用户 get root flag 信息收集…...

网络安全的今年:量子、生成人工智能以及 LLM 和密码

尽管世界总是难以预测,但网络安全的几个强劲趋势表明未来几个月的发展充满希望和令人担忧。有一点是肯定的:2024 年将是非常重要且有趣的一年。 近年来,人工智能(AI)以令人难以置信的速度发展,其在网络安全…...

【FPGA】Verilog:奇偶校验位发生器 | 奇偶校验位校验器

目录 0x00 奇偶校验位发生器 0x01 奇偶校验位校验器 0x02 错误检测器和纠错器...

【心得】关于STM32中RTC的校准方法

最近看了一些关于RTC校准的帖子,发现很多人存在疑惑。正好最近我也在STM32中实现了RTC校准。发些心得。这些对老手来说有些罗索,但对新手有益处。 实现RTC 校准的核心之一是库文件Stm321f0x_bkp.c中的void BKP_SetRTCCalibrationValue (uint8_t Calibra…...

消息中间件面试篇

目录 消息中间件 RabbitMQ 消息不丢失 生产者确认机制 消息持久化 交换机持久化 队列持久化 消息持久化 消费者确认 消息重复消费 出现的场景 解决方案 每条消息设置一个唯一的标识id 幂等方案:【 分布式锁、数据库锁(悲观锁、乐观锁&#…...

【MySQL】-20 MySQL综合-6(MySQL创建数据表+MySQL修改数据表+MySQL删除数据表)

MySQL创建数据表MySQL修改数据表MySQL删除数据表 MySQL创建数据表基本语法在指定的数据库中创建表查看表结构 MySQL修改数据表基本语法添加字段修改字段数据类型删除字段修改字段名称修改表名 MySQL删除数据表基本语法删除表 MySQL创建数据表 在创建数据库之后,接下…...

linux查看当前连接的IP

linux下查询当前所有连接的ip_linux查看某个ip的连接-CSDN博客 netstat -ntu | grep tcp | awk {print $5} | cut -d: -f1 | sort | uniq -c | sort -nr...

洛谷_P1923 【深基9.例4】求第 k 小的数_python写法

哪位大佬可以出一下这个的题解?????话说蓝桥杯可以用numpy库吗?????? 这道题有一个很简单的思路就是排序完成之后再访问。 but有很大的问题&…...

【MySQL】学习约束和使用图形化界面创建表

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-iqtbME2KmWpQFQSt {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…...

QGIS编译(跨平台编译)之四十八:pixman编译(Windows、Linux、MacOS环境下编译)

文章目录 一、pixman介绍二、pixman下载三、Linux下编译四、MacOS下编译五、Windows下编译一、pixman介绍 Pixman 是一个开源的图形库,它提供了底层像素操作功能,包括像素格式转换、图像合成、图像缩放、图像旋转等多种操作。Pixman 主要被用作 Cairo 图形库的后端,支持 Ca…...

华为数通方向HCIP-DataCom H12-821题库(单选题:441-460)

第441题 下面是一台路由输出的信息,关于这段信息描述正确的是 <R1>display bgp peerBGP local router ID : 2.2.2.2Local AS number : 100Total number of peers : 2 Peers in established state : 0Peer V AS MsgRcvd MsgSent OutQ Up/Down …...

【sass】 中使用 /deep/ 修改 elementUI 组件样式报错

element plus 想要覆盖组件的样式&#xff0c;想到了/deep/样式穿透&#xff0c;但样式一直不生效&#xff0c;代码如下&#xff1a; <style scoped lang"sass"> .main_wrapper{padding: 0 53pxposition: relativetop: -20px } >>> .el-tabs__item{h…...

Python算法题集_排序链表

Python算法题集_排序链表 题148&#xff1a;排序链表1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【冒泡大法】2) 改进版一【列表排序】3) 改进版二【数值归并排序】4) 改进版三【快慢指针归并排序】 4. 最优算法 本文为Python算法题集之一的…...

红日靶场2学习

靶场下载来自&#xff1a; http://vulnstack.qiyuanxuetang.net/vuln/detail/3/ 靶场统一登录密码&#xff1a;1qazWSX 按大佬的说法是 环境需要模拟内网和外网两个网段&#xff0c;PC端虚拟机相当于网关服务器&#xff0c;所以需要两张网卡&#xff0c;一个用来向外网提供web…...

将 下载下来的 jar 包 安装到本地的 maven 仓库中

使用管理员权限 打开一个 cmd 窗口输入 mvn -v 查看 maven 版本由于之前 并没有这样的操作所以第一次 执行的时候 提示 命令不存在所以需要将 maven 软件中的 bin 文件的目录 添加到 环境变量中 的 path 变量 中本机路径为:D:\Program Files (x86)\apache-maven-3.5.2\bin C:\…...

Qt初使用(使用Qt创建项目,在创建的项目中添加类,Qt中输出内容到控制台,设置窗口大小和窗口标题,Qt查看说明文档)

目录 一.创建带模板的项目新建项目运行在文件中查看该项目文件 二.在创建好的项目中添加类三.创建空项目&#xff08;不使用自带的模板&#xff09;四.Qt中输出内容到控制台五.设置窗口大小 , 窗口标题 ,固定窗口大小QWidget组件的说明 六.Pro文件帮助文档 按windows键&#xf…...

【黑马程序员】C++运算符重载

文章目录 运算符重载加号运算符重载成员函数实现运算符重载全局函数实现运算符重载全局函数实现函数重载 左移运算符重载递增运算符重载赋值运算符重载关系运算符重载函数调用运算符重载 运算符重载 对已有的运算符重新进行定义&#xff0c;赋予其另一种功能&#xff0c;以适应…...

Java中的乐观锁和悲观锁

使用场景及用法 悲观锁 总是假设最坏的情况&#xff0c;每次去拿数据的时候都认为别人会修改&#xff0c;所以每次在拿数据的时候都会上锁&#xff0c;这样别人想拿这个数据就会阻塞直到它拿到锁&#xff08;共享资源每次只给一个线程使用&#xff0c;其它线程阻塞&#xff0c;…...

从Unity到Three.js(计时器、Transform)

计时器、模型对象平移函数、枚举定义的使用 对应unity中的一些常用功能 import * as THREE from three;const scene new THREE.Scene(); const camera new THREE.PerspectiveCamera(60, window.innerWidth / window.innerHeight, 0.1, 1000);const renderer new THREE.WebG…...

红日靶场(初学)

按照以前的来说一般是有两层网络的内网和外网 这个也是这样的 所以需要两张网卡&#xff0c;一个用来向外网提供web服务&#xff0c;一个是通向内网 以下就是配置 以下就是一些相关信息 外网网段是写成了192.168.111.1/24 WEB PC DC kali 开始扫描 nmap -sS -sV -Pn -T4 19…...

【PyTorch】改变张量(Tensor)形状操作

PyTorch深度学习总结 第二章 PyTorch中改变张量(Tensor)形状操作 文章目录 PyTorch深度学习总结一、前言二、改变张量形状 一、前言 上文讲解了张量生成和信息获取的知识&#xff0c;本文将针对张量的操作进行详细讲解。 二、改变张量形状 1、改变张量形状的函数总结&#x…...

《金融人工智能:用python实现ai量化交易》

融合了数学、python、深度学习以及金融知识&#xff0c;是本推荐的好书。请收藏本文&#xff0c;读后再给大学总结。...