GPU服务器安装显卡驱动、CUDA和cuDNN
GPU服务器安装cuda和cudnn
- 1. 服务器驱动安装
- 2. cuda安装
- 3. cudNN安装
- 4. 安装docker环境
- 5. 安装nvidia-docker2
- 5.1 ubuntu系统安装
- 5.2 centos系统安装
- 6. 测试docker容调用GPU服务
1. 服务器驱动安装
- 显卡驱动下载地址
- https://www.nvidia.cn/Download/index.aspx?lang=cn
- 显卡驱动安装完成后可以通过命令:nvidia-smi 查看驱动信息
- 显卡型号查看命令:lspci |grep -i vga
root@hk-MZ32-AR0-00:~# nvidia-smi
Fri Feb 10 17:27:58 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.106.00 Driver Version: 460.106.00 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 Off | 00000000:04:00.0 Off | 0 |
| N/A 46C P0 27W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla T4 Off | 00000000:06:00.0 Off | 0 |
| N/A 43C P0 28W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 2 Tesla T4 Off | 00000000:0D:00.0 Off | 0 |
| N/A 48C P0 28W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 3 Tesla T4 Off | 00000000:0F:00.0 Off | 0 |
| N/A 45C P0 26W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 4 Tesla T4 Off | 00000000:17:00.0 Off | 0 |
| N/A 48C P0 27W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 5 Tesla T4 Off | 00000000:19:00.0 Off | 0 |
| N/A 48C P0 28W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 6 Tesla T4 Off | 00000000:21:00.0 Off | 0 |
| N/A 45C P0 26W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 7 Tesla T4 Off | 00000000:23:00.0 Off | 0 |
| N/A 45C P0 27W / 70W | 0MiB / 15109MiB | 4% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
2. cuda安装
- CUDA安装的时候需要注意显卡的驱动版本
- 参考文档 :接入附上一份
- 此次实验机的驱动版本是 460.106.00,我选用的版本是CUDA 11.0
- 下载地址:https://developer.nvidia.com/cuda-toolkit-archive
root@hk-MZ32-AR0-00:~# wget http://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run
--2023-01-29 19:55:42-- http://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run
Resolving developer.download.nvidia.com (developer.download.nvidia.com)... 152.199.39.144
Connecting to developer.download.nvidia.com (developer.download.nvidia.com)|152.199.39.144|:80... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run [following]
--2023-01-29 19:55:43-- https://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run
Connecting to developer.download.nvidia.com (developer.download.nvidia.com)|152.199.39.144|:443... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://developer.download.nvidia.cn/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run [following]
--2023-01-29 19:55:44-- https://developer.download.nvidia.cn/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run
Resolving developer.download.nvidia.cn (developer.download.nvidia.cn)... 125.64.2.195, 125.64.2.196, 150.138.231.66, ...
Connecting to developer.download.nvidia.cn (developer.download.nvidia.cn)|125.64.2.195|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 3066694836 (2.9G) [application/octet-stream]
Saving to: ‘cuda_11.0.2_450.51.05_linux.run’100%[=====================================================================================================================================>] 3,066,694,836 11.3MB/s in 4m 25s 2023-01-29 20:00:15 (11.0 MB/s) - ‘cuda_11.0.2_450.51.05_linux.run’ saved [3066694836/3066694836]
3. cudNN安装
- 下载链接:https://developer.nvidia.com/rdp/cudnn-archive
- cudNN下载的时候也需要注意CUDA的版本,如下图红色框标注的版本
root@hk-MZ32-AR0-00:~# rzZMODEM Session started e50
------------------------ Sent cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz
root@hk-MZ32-AR0-00:~# tar -xvf cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_infer_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_infer_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_train_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_train_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_infer_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_infer_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_train_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_train_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_infer_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_infer_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_train_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_train_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_infer.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_infer.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_infer.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_train.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_train.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_train.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_infer.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_infer.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_infer.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_train.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_train.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_train.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_infer.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_infer.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_infer.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_train.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_train.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_train.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_adv_infer_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_adv_train_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_backend_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_cnn_infer_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_cnn_train_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_ops_infer_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_ops_train_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_version_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_adv_infer.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_adv_train.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_backend.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_cnn_infer.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_cnn_train.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_ops_infer.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_ops_train.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_version.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/LICENSE
root@hk-MZ32-AR0-00:~# ll cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/
总用量 2520176
drwxr-xr-x 2 25503 2174 4096 11月 22 04:14 ./
drwxr-xr-x 4 25503 2174 4096 11月 22 04:14 ../
lrwxrwxrwx 1 25503 2174 23 11月 22 03:58 libcudnn_adv_infer.so -> libcudnn_adv_infer.so.8*
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_adv_infer.so.8 -> libcudnn_adv_infer.so.8.7.0*
-rwxr-xr-x 1 25503 2174 130381904 11月 22 03:58 libcudnn_adv_infer.so.8.7.0*
-rw-r--r-- 1 25503 2174 132979922 11月 22 03:58 libcudnn_adv_infer_static.a
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_adv_infer_static_v8.a -> libcudnn_adv_infer_static.a
lrwxrwxrwx 1 25503 2174 23 11月 22 03:58 libcudnn_adv_train.so -> libcudnn_adv_train.so.8*
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_adv_train.so.8 -> libcudnn_adv_train.so.8.7.0*
-rwxr-xr-x 1 25503 2174 121095120 11月 22 03:58 libcudnn_adv_train.so.8.7.0*
-rw-r--r-- 1 25503 2174 123566296 11月 22 03:58 libcudnn_adv_train_static.a
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_adv_train_static_v8.a -> libcudnn_adv_train_static.a
lrwxrwxrwx 1 25503 2174 23 11月 22 03:58 libcudnn_cnn_infer.so -> libcudnn_cnn_infer.so.8*
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_cnn_infer.so.8 -> libcudnn_cnn_infer.so.8.7.0*
-rwxr-xr-x 1 25503 2174 639185544 11月 22 03:58 libcudnn_cnn_infer.so.8.7.0*
-rw-r--r-- 1 25503 2174 829548950 11月 22 03:58 libcudnn_cnn_infer_static.a
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_cnn_infer_static_v8.a -> libcudnn_cnn_infer_static.a
lrwxrwxrwx 1 25503 2174 23 11月 22 03:58 libcudnn_cnn_train.so -> libcudnn_cnn_train.so.8*
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_cnn_train.so.8 -> libcudnn_cnn_train.so.8.7.0*
-rwxr-xr-x 1 25503 2174 102197000 11月 22 03:58 libcudnn_cnn_train.so.8.7.0*
-rw-r--r-- 1 25503 2174 153525776 11月 22 03:58 libcudnn_cnn_train_static.a
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_cnn_train_static_v8.a -> libcudnn_cnn_train_static.a
lrwxrwxrwx 1 25503 2174 23 11月 22 03:58 libcudnn_ops_infer.so -> libcudnn_ops_infer.so.8*
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_ops_infer.so.8 -> libcudnn_ops_infer.so.8.7.0*
-rwxr-xr-x 1 25503 2174 97489336 11月 22 03:58 libcudnn_ops_infer.so.8.7.0*
-rw-r--r-- 1 25503 2174 100636906 11月 22 03:58 libcudnn_ops_infer_static.a
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_ops_infer_static_v8.a -> libcudnn_ops_infer_static.a
lrwxrwxrwx 1 25503 2174 23 11月 22 03:58 libcudnn_ops_train.so -> libcudnn_ops_train.so.8*
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_ops_train.so.8 -> libcudnn_ops_train.so.8.7.0*
-rwxr-xr-x 1 25503 2174 74703096 11月 22 03:58 libcudnn_ops_train.so.8.7.0*
-rw-r--r-- 1 25503 2174 75156862 11月 22 03:58 libcudnn_ops_train_static.a
lrwxrwxrwx 1 25503 2174 27 11月 22 03:58 libcudnn_ops_train_static_v8.a -> libcudnn_ops_train_static.a
lrwxrwxrwx 1 25503 2174 13 11月 22 03:58 libcudnn.so -> libcudnn.so.8*
lrwxrwxrwx 1 25503 2174 17 11月 22 03:58 libcudnn.so.8 -> libcudnn.so.8.7.0*
-rwxr-xr-x 1 25503 2174 150200 11月 22 03:58 libcudnn.so.8.7.0*root@hk-MZ32-AR0-00:~# ll cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/
总用量 448
drwxr-xr-x 2 25503 2174 4096 11月 22 04:14 ./
drwxr-xr-x 4 25503 2174 4096 11月 22 04:14 ../
-rw-r--r-- 1 25503 2174 29025 11月 22 03:58 cudnn_adv_infer.h
-rw-r--r-- 1 25503 2174 29025 11月 22 03:58 cudnn_adv_infer_v8.h
-rw-r--r-- 1 25503 2174 27700 11月 22 03:58 cudnn_adv_train.h
-rw-r--r-- 1 25503 2174 27700 11月 22 03:58 cudnn_adv_train_v8.h
-rw-r--r-- 1 25503 2174 24727 11月 22 03:58 cudnn_backend.h
-rw-r--r-- 1 25503 2174 24727 11月 22 03:58 cudnn_backend_v8.h
-rw-r--r-- 1 25503 2174 29083 11月 22 03:58 cudnn_cnn_infer.h
-rw-r--r-- 1 25503 2174 29083 11月 22 03:58 cudnn_cnn_infer_v8.h
-rw-r--r-- 1 25503 2174 10217 11月 22 03:58 cudnn_cnn_train.h
-rw-r--r-- 1 25503 2174 10217 11月 22 03:58 cudnn_cnn_train_v8.h
-rw-r--r-- 1 25503 2174 2968 11月 22 03:58 cudnn.h
-rw-r--r-- 1 25503 2174 49631 11月 22 03:58 cudnn_ops_infer.h
-rw-r--r-- 1 25503 2174 49631 11月 22 03:58 cudnn_ops_infer_v8.h
-rw-r--r-- 1 25503 2174 25733 11月 22 03:58 cudnn_ops_train.h
-rw-r--r-- 1 25503 2174 25733 11月 22 03:58 cudnn_ops_train_v8.h
-rw-r--r-- 1 25503 2174 2968 11月 22 03:58 cudnn_v8.h
-rw-r--r-- 1 25503 2174 3113 11月 22 03:58 cudnn_version.h
-rw-r--r-- 1 25503 2174 3113 11月 22 03:58 cudnn_version_v8.h
root@hk-MZ32-AR0-00:~# cp -P cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/* /usr/local/cuda/lib64/root@hk-MZ32-AR0-00:~# cp -P cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/* /usr/local/cuda/include/
root@hk-MZ32-AR0-00:~# ll /usr/local/cuda/lib64/libcudnn*
lrwxrwxrwx 1 root root 23 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_adv_infer.so -> libcudnn_adv_infer.so.8*
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_adv_infer.so.8 -> libcudnn_adv_infer.so.8.7.0*
-rwxr-xr-x 1 root root 130381904 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_adv_infer.so.8.7.0*
-rw-r--r-- 1 root root 132979922 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_adv_infer_static.a
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_adv_infer_static_v8.a -> libcudnn_adv_infer_static.a
lrwxrwxrwx 1 root root 23 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_adv_train.so -> libcudnn_adv_train.so.8*
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_adv_train.so.8 -> libcudnn_adv_train.so.8.7.0*
-rwxr-xr-x 1 root root 121095120 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_adv_train.so.8.7.0*
-rw-r--r-- 1 root root 123566296 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_adv_train_static.a
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_adv_train_static_v8.a -> libcudnn_adv_train_static.a
lrwxrwxrwx 1 root root 23 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_cnn_infer.so -> libcudnn_cnn_infer.so.8*
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_cnn_infer.so.8 -> libcudnn_cnn_infer.so.8.7.0*
-rwxr-xr-x 1 root root 639185544 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_cnn_infer.so.8.7.0*
-rw-r--r-- 1 root root 829548950 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_cnn_infer_static.a
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_cnn_infer_static_v8.a -> libcudnn_cnn_infer_static.a
lrwxrwxrwx 1 root root 23 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_cnn_train.so -> libcudnn_cnn_train.so.8*
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_cnn_train.so.8 -> libcudnn_cnn_train.so.8.7.0*
-rwxr-xr-x 1 root root 102197000 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_cnn_train.so.8.7.0*
-rw-r--r-- 1 root root 153525776 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_cnn_train_static.a
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_cnn_train_static_v8.a -> libcudnn_cnn_train_static.a
lrwxrwxrwx 1 root root 23 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_ops_infer.so -> libcudnn_ops_infer.so.8*
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_ops_infer.so.8 -> libcudnn_ops_infer.so.8.7.0*
-rwxr-xr-x 1 root root 97489336 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_ops_infer.so.8.7.0*
-rw-r--r-- 1 root root 100636906 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_ops_infer_static.a
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_ops_infer_static_v8.a -> libcudnn_ops_infer_static.a
lrwxrwxrwx 1 root root 23 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_ops_train.so -> libcudnn_ops_train.so.8*
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_ops_train.so.8 -> libcudnn_ops_train.so.8.7.0*
-rwxr-xr-x 1 root root 74703096 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_ops_train.so.8.7.0*
-rw-r--r-- 1 root root 75156862 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_ops_train_static.a
lrwxrwxrwx 1 root root 27 2月 10 17:39 /usr/local/cuda/lib64/libcudnn_ops_train_static_v8.a -> libcudnn_ops_train_static.a
lrwxrwxrwx 1 root root 13 2月 10 17:39 /usr/local/cuda/lib64/libcudnn.so -> libcudnn.so.8*
lrwxrwxrwx 1 root root 17 2月 10 17:39 /usr/local/cuda/lib64/libcudnn.so.8 -> libcudnn.so.8.7.0*
-rwxr-xr-x 1 root root 150200 2月 10 17:39 /usr/local/cuda/lib64/libcudnn.so.8.7.0*
root@hk-MZ32-AR0-00:~# ll /usr/local/cuda/lib64/libcudnn* | wc -l
33
root@hk-MZ32-AR0-00:~# ll cudnn-linux-x86_64-8.7.0.84_cuda11-archive/
include/ lib/ LICENSE
root@hk-MZ32-AR0-00:~# ll cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/* |wc -l
33root@hk-MZ32-AR0-00:~# ll /usr/local/cuda/include/cudn*
-rw-r--r-- 1 root root 29025 2月 10 17:39 /usr/local/cuda/include/cudnn_adv_infer.h
-rw-r--r-- 1 root root 29025 2月 10 17:39 /usr/local/cuda/include/cudnn_adv_infer_v8.h
-rw-r--r-- 1 root root 27700 2月 10 17:39 /usr/local/cuda/include/cudnn_adv_train.h
-rw-r--r-- 1 root root 27700 2月 10 17:39 /usr/local/cuda/include/cudnn_adv_train_v8.h
-rw-r--r-- 1 root root 24727 2月 10 17:39 /usr/local/cuda/include/cudnn_backend.h
-rw-r--r-- 1 root root 24727 2月 10 17:39 /usr/local/cuda/include/cudnn_backend_v8.h
-rw-r--r-- 1 root root 29083 2月 10 17:39 /usr/local/cuda/include/cudnn_cnn_infer.h
-rw-r--r-- 1 root root 29083 2月 10 17:39 /usr/local/cuda/include/cudnn_cnn_infer_v8.h
-rw-r--r-- 1 root root 10217 2月 10 17:39 /usr/local/cuda/include/cudnn_cnn_train.h
-rw-r--r-- 1 root root 10217 2月 10 17:39 /usr/local/cuda/include/cudnn_cnn_train_v8.h
-rw-r--r-- 1 root root 2968 2月 10 17:39 /usr/local/cuda/include/cudnn.h
-rw-r--r-- 1 root root 49631 2月 10 17:39 /usr/local/cuda/include/cudnn_ops_infer.h
-rw-r--r-- 1 root root 49631 2月 10 17:39 /usr/local/cuda/include/cudnn_ops_infer_v8.h
-rw-r--r-- 1 root root 25733 2月 10 17:39 /usr/local/cuda/include/cudnn_ops_train.h
-rw-r--r-- 1 root root 25733 2月 10 17:39 /usr/local/cuda/include/cudnn_ops_train_v8.h
-rw-r--r-- 1 root root 2968 2月 10 17:39 /usr/local/cuda/include/cudnn_v8.h
-rw-r--r-- 1 root root 3113 2月 10 17:39 /usr/local/cuda/include/cudnn_version.h
-rw-r--r-- 1 root root 3113 2月 10 17:39 /usr/local/cuda/include/cudnn_version_v8.h
root@hk-MZ32-AR0-00:~# ll /usr/local/cuda/include/cudn* |wc -l
18
root@hk-MZ32-AR0-00:~# ll cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/* | wc -l
18
4. 安装docker环境
root@hk-MZ32-AR0-00:~# curl -fsSL https://mirrors.aliyun.com/docker-ce/linux/ubuntu/gpg | sudo apt-key add -root@hk-MZ32-AR0-00:~# add-apt-repository "deb [arch=amd64] https://mirrors.aliyun.com/docker-ce/linux/ubuntu $(lsb_release -cs) stable"root@hk-MZ32-AR0-00:~# apt-get -y install docker-ce
5. 安装nvidia-docker2
5.1 ubuntu系统安装
root@hk-MZ32-AR0-00:~# curl -s -L https://nvidia.github.io/nvidia-docker/$(. /etc/os-release;echo $ID$VERSION_ID)/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
deb https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/$(ARCH) /
#deb https://nvidia.github.io/libnvidia-container/experimental/ubuntu18.04/$(ARCH) /
deb https://nvidia.github.io/nvidia-container-runtime/stable/ubuntu18.04/$(ARCH) /
#deb https://nvidia.github.io/nvidia-container-runtime/experimental/ubuntu18.04/$(ARCH) /
deb https://nvidia.github.io/nvidia-docker/ubuntu18.04/$(ARCH) /root@hk-MZ32-AR0-00:~# apt-get update
命中:1 http://mirrors.aliyun.com/ubuntu bionic InRelease
命中:2 https://mirrors.aliyun.com/docker-ce/linux/ubuntu focal InRelease
获取:3 http://mirrors.aliyun.com/ubuntu bionic-security InRelease [88.7 kB]
命中:4 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic InRelease
获取:5 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates InRelease [88.7 kB]
获取:6 http://mirrors.aliyun.com/ubuntu bionic-updates InRelease [88.7 kB]
获取:7 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-backports InRelease [83.3 kB]
获取:8 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 InRelease [1,484 B]
命中:9 https://packages.microsoft.com/ubuntu/18.04/prod bionic InRelease
获取:10 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-security InRelease [88.7 kB]
获取:11 http://mirrors.aliyun.com/ubuntu bionic-proposed InRelease [242 kB]
获取:12 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-proposed InRelease [242 kB]
命中:13 http://ppa.launchpad.net/graphics-drivers/ppa/ubuntu focal InRelease
命中:14 https://linux.teamviewer.com/deb stable InRelease
获取:15 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates/main i386 Packages [1,604 kB]
获取:16 http://mirrors.aliyun.com/ubuntu bionic-backports InRelease [83.3 kB]
获取:17 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates/main amd64 Packages [2,909 kB]
获取:18 http://mirrors.aliyun.com/ubuntu bionic-security/main amd64 DEP-11 Metadata [76.8 kB]
获取:19 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates/main amd64 DEP-11 Metadata [297 kB]
获取:20 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates/universe amd64 DEP-11 Metadata [302 kB]
获取:21 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates/multiverse amd64 DEP-11 Metadata [2,468 B]
获取:22 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-backports/main amd64 DEP-11 Metadata [8,108 B]
获取:23 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-backports/universe amd64 DEP-11 Metadata [10.0 kB]
获取:24 https://nvidia.github.io/libnvidia-container/stable/ubuntu22.04/amd64 InRelease [1,484 B]
获取:25 http://mirrors.aliyun.com/ubuntu bionic-security/universe amd64 DEP-11 Metadata [61.0 kB]
获取:26 http://mirrors.aliyun.com/ubuntu bionic-security/multiverse amd64 DEP-11 Metadata [2,464 B]
获取:27 http://mirrors.aliyun.com/ubuntu bionic-updates/main amd64 Packages [2,909 kB]
获取:28 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-security/main amd64 DEP-11 Metadata [76.8 kB]
获取:29 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-security/universe amd64 DEP-11 Metadata [61.1 kB]
获取:30 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-security/multiverse amd64 DEP-11 Metadata [2,464 B]
获取:31 https://nvidia.github.io/nvidia-container-runtime/stable/ubuntu22.04/amd64 InRelease [1,481 B]
获取:32 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-proposed/main Sources [81.3 kB]
获取:33 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-proposed/main Translation-en [38.8 kB]
获取:34 https://nvidia.github.io/nvidia-docker/ubuntu22.04/amd64 InRelease [1,474 B]
获取:35 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-proposed/main amd64 DEP-11 Metadata [6,552 B]
获取:36 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 Packages [22.3 kB]
获取:37 https://nvidia.github.io/libnvidia-container/stable/ubuntu22.04/amd64 Packages [22.3 kB]
获取:38 https://nvidia.github.io/nvidia-container-runtime/stable/ubuntu22.04/amd64 Packages [7,416 B]
获取:39 https://nvidia.github.io/nvidia-docker/ubuntu22.04/amd64 Packages [4,488 B]
获取:40 http://mirrors.aliyun.com/ubuntu bionic-updates/main i386 Packages [1,604 kB]
获取:41 http://mirrors.aliyun.com/ubuntu bionic-updates/main amd64 DEP-11 Metadata [297 kB]
获取:42 http://mirrors.aliyun.com/ubuntu bionic-updates/universe amd64 DEP-11 Metadata [302 kB]
获取:43 http://mirrors.aliyun.com/ubuntu bionic-updates/multiverse amd64 DEP-11 Metadata [2,468 B]
获取:44 http://mirrors.aliyun.com/ubuntu bionic-proposed/main Sources [81.3 kB]
获取:45 http://mirrors.aliyun.com/ubuntu bionic-proposed/main Translation-en [38.8 kB]
获取:46 http://mirrors.aliyun.com/ubuntu bionic-proposed/main amd64 DEP-11 Metadata [6,516 B]
获取:47 http://mirrors.aliyun.com/ubuntu bionic-backports/main amd64 DEP-11 Metadata [8,092 B]
获取:48 http://mirrors.aliyun.com/ubuntu bionic-backports/universe amd64 DEP-11 Metadata [10.1 kB]
已下载 11.9 MB,耗时 11秒 (1,115 kB/s)
正在读取软件包列表... 2%
正在读取软件包列表... 完成
root@test:/etc/apt/sources.list.d#
root@test:/etc/apt/sources.list.d# apt-get install nvidia-docker2
正在读取软件包列表... 完成
正在分析软件包的依赖关系树
正在读取状态信息... 完成
下列软件包是自动安装的并且现在不需要了:libevent-2.1-7 libnatpmp1 libxvmc1 transmission-common
使用'apt autoremove'来卸载它(它们)。
将会同时安装下列软件:libnvidia-container-tools libnvidia-container1 nvidia-container-toolkit nvidia-container-toolkit-base
下列【新】软件包将被安装:libnvidia-container-tools libnvidia-container1 nvidia-container-toolkit nvidia-container-toolkit-base nvidia-docker2
升级了 0 个软件包,新安装了 5 个软件包,要卸载 0 个软件包,有 80 个软件包未被升级。
需要下载 3,773 kB 的归档。
解压缩后会消耗 14.6 MB 的额外空间。
您希望继续执行吗? [Y/n] y
获取:1 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 libnvidia-container1 1.12.0-1 [927 kB]
获取:2 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 libnvidia-container-tools 1.12.0-1 [24.5 kB]
获取:3 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 nvidia-container-toolkit-base 1.12.0-1 [2,066 kB]
获取:4 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 nvidia-container-toolkit 1.12.0-1 [750 kB]
获取:5 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 nvidia-docker2 2.12.0-1 [5,544 B]
已下载 3,773 kB,耗时 2分 13秒 (28.3 kB/s)
正在选中未选择的软件包 libnvidia-container1:amd64。
(正在读取数据库 ... 系统当前共安装有 202374 个文件和目录。)
准备解压 .../libnvidia-container1_1.12.0-1_amd64.deb ...
正在解压 libnvidia-container1:amd64 (1.12.0-1) ...
正在选中未选择的软件包 libnvidia-container-tools。
准备解压 .../libnvidia-container-tools_1.12.0-1_amd64.deb ...
正在解压 libnvidia-container-tools (1.12.0-1) ...
正在选中未选择的软件包 nvidia-container-toolkit-base。
准备解压 .../nvidia-container-toolkit-base_1.12.0-1_amd64.deb ...
正在解压 nvidia-container-toolkit-base (1.12.0-1) ...
正在选中未选择的软件包 nvidia-container-toolkit。
准备解压 .../nvidia-container-toolkit_1.12.0-1_amd64.deb ...
正在解压 nvidia-container-toolkit (1.12.0-1) ...
正在选中未选择的软件包 nvidia-docker2。
准备解压 .../nvidia-docker2_2.12.0-1_all.deb ...
正在解压 nvidia-docker2 (2.12.0-1) ...
正在设置 nvidia-container-toolkit-base (1.12.0-1) ...
正在设置 libnvidia-container1:amd64 (1.12.0-1) ...
正在设置 libnvidia-container-tools (1.12.0-1) ...
正在设置 nvidia-container-toolkit (1.12.0-1) ...
正在设置 nvidia-docker2 (2.12.0-1) ...
正在处理用于 libc-bin (2.31-0ubuntu9.7) 的触发器 ...root@hk-MZ32-AR0-00:~# systemctl restart docker
5.2 centos系统安装
[root@bj ~]# sudo yum install -y nvidia-docker2
Loaded plugins: fastestmirror, product-id, search-disabled-repos, subscription-managerThis system is not registered with an entitlement server. You can use subscription-manager to register.Loading mirror speeds from cached hostfile
epel/x86_64/metalink | 6.2 kB 00:00:00 * base: mirrors.163.com* epel: mirrors.bfsu.edu.cn* extras: mirrors.ustc.edu.cn* updates: mirrors.ustc.edu.cn
base | 3.6 kB 00:00:00
docker-ce-stable | 3.5 kB 00:00:00
extras | 2.9 kB 00:00:00
libnvidia-container/x86_64/signature | 833 B 00:00:00
Retrieving key from https://nvidia.github.io/libnvidia-container/gpgkey
Importing GPG key 0xF796ECB0:Userid : "NVIDIA CORPORATION (Open Source Projects) <cudatools@nvidia.com>"Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0From : https://nvidia.github.io/libnvidia-container/gpgkey
libnvidia-container/x86_64/signature | 2.1 kB 00:00:00 !!!
nvidia-container-runtime/x86_64/signature | 833 B 00:00:00
Retrieving key from https://nvidia.github.io/nvidia-container-runtime/gpgkey
Importing GPG key 0xF796ECB0:Userid : "NVIDIA CORPORATION (Open Source Projects) <cudatools@nvidia.com>"Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0From : https://nvidia.github.io/nvidia-container-runtime/gpgkey
nvidia-container-runtime/x86_64/signature | 2.1 kB 00:00:00 !!!
nvidia-docker/x86_64/signature | 833 B 00:00:00
Retrieving key from https://nvidia.github.io/nvidia-docker/gpgkey
Importing GPG key 0xF796ECB0:Userid : "NVIDIA CORPORATION (Open Source Projects) <cudatools@nvidia.com>"Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0From : https://nvidia.github.io/nvidia-docker/gpgkey
nvidia-docker/x86_64/signature | 2.1 kB 00:00:00 !!!
teamviewer/x86_64/signature | 867 B 00:00:00
teamviewer/x86_64/signature | 2.5 kB 00:00:00 !!!
updates | 2.9 kB 00:00:00
(1/3): nvidia-container-runtime/x86_64/primary | 11 kB 00:00:01
(2/3): nvidia-docker/x86_64/primary | 8.0 kB 00:00:01
(3/3): libnvidia-container/x86_64/primary | 27 kB 00:00:03
libnvidia-container 171/171
nvidia-container-runtime 71/71
nvidia-docker 54/54
Resolving Dependencies
--> Running transaction check
---> Package nvidia-docker2.noarch 0:2.11.0-1 will be installed
--> Processing Dependency: nvidia-container-toolkit >= 1.10.0-1 for package: nvidia-docker2-2.11.0-1.noarch
--> Running transaction check
---> Package nvidia-container-toolkit.x86_64 0:1.11.0-1 will be installed
--> Processing Dependency: nvidia-container-toolkit-base = 1.11.0-1 for package: nvidia-container-toolkit-1.11.0-1.x86_64
--> Processing Dependency: libnvidia-container-tools < 2.0.0 for package: nvidia-container-toolkit-1.11.0-1.x86_64
--> Processing Dependency: libnvidia-container-tools >= 1.11.0-1 for package: nvidia-container-toolkit-1.11.0-1.x86_64
--> Running transaction check
---> Package libnvidia-container-tools.x86_64 0:1.11.0-1 will be installed
--> Processing Dependency: libnvidia-container1(x86-64) >= 1.11.0-1 for package: libnvidia-container-tools-1.11.0-1.x86_64
--> Processing Dependency: libnvidia-container.so.1(NVC_1.0)(64bit) for package: libnvidia-container-tools-1.11.0-1.x86_64
--> Processing Dependency: libnvidia-container.so.1()(64bit) for package: libnvidia-container-tools-1.11.0-1.x86_64
---> Package nvidia-container-toolkit-base.x86_64 0:1.11.0-1 will be installed
--> Running transaction check
---> Package libnvidia-container1.x86_64 0:1.11.0-1 will be installed
--> Finished Dependency ResolutionDependencies Resolved=================================================================================================================================================================================Package Arch Version Repository Size
=================================================================================================================================================================================
Installing:nvidia-docker2 noarch 2.11.0-1 libnvidia-container 8.7 k
Installing for dependencies:libnvidia-container-tools x86_64 1.11.0-1 libnvidia-container 50 klibnvidia-container1 x86_64 1.11.0-1 libnvidia-container 1.0 Mnvidia-container-toolkit x86_64 1.11.0-1 libnvidia-container 780 knvidia-container-toolkit-base x86_64 1.11.0-1 libnvidia-container 2.5 MTransaction Summary
=================================================================================================================================================================================
Install 1 Package (+4 Dependent packages)Total download size: 4.3 M
Installed size: 12 M
Downloading packages:
(1/5): libnvidia-container-tools-1.11.0-1.x86_64.rpm | 50 kB 00:00:01
(2/5): libnvidia-container1-1.11.0-1.x86_64.rpm | 1.0 MB 00:00:03
(3/5): nvidia-container-toolkit-1.11.0-1.x86_64.rpm | 780 kB 00:00:03
(4/5): nvidia-docker2-2.11.0-1.noarch.rpm | 8.7 kB 00:00:00
(5/5): nvidia-container-toolkit-base-1.11.0-1.x86_64.rpm | 2.5 MB 00:00:43
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Total 94 kB/s | 4.3 MB 00:00:46
Running transaction check
Running transaction test
Transaction test succeeded
Running transactionInstalling : nvidia-container-toolkit-base-1.11.0-1.x86_64 1/5 Installing : libnvidia-container1-1.11.0-1.x86_64 2/5 Installing : libnvidia-container-tools-1.11.0-1.x86_64 3/5 Installing : nvidia-container-toolkit-1.11.0-1.x86_64 4/5 Installing : nvidia-docker2-2.11.0-1.noarch 5/5 Verifying : libnvidia-container1-1.11.0-1.x86_64 1/5 Verifying : nvidia-container-toolkit-base-1.11.0-1.x86_64 2/5 Verifying : nvidia-container-toolkit-1.11.0-1.x86_64 3/5 Verifying : libnvidia-container-tools-1.11.0-1.x86_64 4/5 Verifying : nvidia-docker2-2.11.0-1.noarch 5/5 Installed:nvidia-docker2.noarch 0:2.11.0-1 Dependency Installed:libnvidia-container-tools.x86_64 0:1.11.0-1 libnvidia-container1.x86_64 0:1.11.0-1 nvidia-container-toolkit.x86_64 0:1.11.0-1 nvidia-container-toolkit-base.x86_64 0:1.11.0-1Complete!
- 若是centos系统,需要用yum安装过nvidia-docker2,虽然已经安装过nvidia-container-toolkit,但是在容器中使用gpu的时候报错,更新安装 nvidia-container-toolkit
# 设置yum源:nvidia-container-toolkit.repo[root@bj ~]# distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
> && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | tee /etc/yum.repos.d/nvidia-container-toolkit.repo
[libnvidia-container]
name=libnvidia-container
baseurl=https://nvidia.github.io/libnvidia-container/stable/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://nvidia.github.io/libnvidia-container/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt[libnvidia-container-experimental]
name=libnvidia-container-experimental
baseurl=https://nvidia.github.io/libnvidia-container/experimental/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=0
gpgkey=https://nvidia.github.io/libnvidia-container/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt[root@bj ~]# yum install -y nvidia-container-toolkit
Loaded plugins: fastestmirror, product-id, search-disabled-repos, subscription-managerThis system is not registered with an entitlement server. You can use subscription-manager to register.Repository libnvidia-container is listed more than once in the configuration
Repository libnvidia-container-experimental is listed more than once in the configuration
Loading mirror speeds from cached hostfile* base: mirrors.ustc.edu.cn* epel: mirrors.ustc.edu.cn* extras: mirrors.ustc.edu.cn* updates: mirrors.ustc.edu.cn
Resolving Dependencies
--> Running transaction check
---> Package nvidia-container-toolkit.x86_64 0:1.11.0-1 will be updated
---> Package nvidia-container-toolkit.x86_64 0:1.12.0-0.1.rc.3 will be an update
--> Processing Dependency: nvidia-container-toolkit-base = 1.12.0-0.1.rc.3 for package: nvidia-container-toolkit-1.12.0-0.1.rc.3.x86_64
--> Processing Dependency: libnvidia-container-tools >= 1.12.0-0.1.rc.3 for package: nvidia-container-toolkit-1.12.0-0.1.rc.3.x86_64
--> Running transaction check
---> Package libnvidia-container-tools.x86_64 0:1.11.0-1 will be updated
---> Package libnvidia-container-tools.x86_64 0:1.12.0-0.1.rc.3 will be an update
--> Processing Dependency: libnvidia-container1(x86-64) >= 1.12.0-0.1.rc.3 for package: libnvidia-container-tools-1.12.0-0.1.rc.3.x86_64
---> Package nvidia-container-toolkit-base.x86_64 0:1.11.0-1 will be updated
---> Package nvidia-container-toolkit-base.x86_64 0:1.12.0-0.1.rc.3 will be an update
--> Running transaction check
---> Package libnvidia-container1.x86_64 0:1.11.0-1 will be updated
---> Package libnvidia-container1.x86_64 0:1.12.0-0.1.rc.3 will be an update
--> Finished Dependency ResolutionDependencies Resolved=================================================================================================================================================================================Package Arch Version Repository Size
=================================================================================================================================================================================
Updating:nvidia-container-toolkit x86_64 1.12.0-0.1.rc.3 libnvidia-container-experimental 797 k
Updating for dependencies:libnvidia-container-tools x86_64 1.12.0-0.1.rc.3 libnvidia-container-experimental 50 klibnvidia-container1 x86_64 1.12.0-0.1.rc.3 libnvidia-container-experimental 1.0 Mnvidia-container-toolkit-base x86_64 1.12.0-0.1.rc.3 libnvidia-container-experimental 3.4 MTransaction Summary
=================================================================================================================================================================================
Upgrade 1 Package (+3 Dependent packages)Total download size: 5.2 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
(1/4): libnvidia-container-tools-1.12.0-0.1.rc.3.x86_64.rpm | 50 kB 00:00:00
(2/4): nvidia-container-toolkit-1.12.0-0.1.rc.3.x86_64.rpm | 797 kB 00:00:00
(3/4): libnvidia-container1-1.12.0-0.1.rc.3.x86_64.rpm | 1.0 MB 00:00:02
(4/4): nvidia-container-toolkit-base-1.12.0-0.1.rc.3.x86_64.rpm | 3.4 MB 00:00:00
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Total 2.0 MB/s | 5.2 MB 00:00:02
Running transaction check
Running transaction test
Transaction test succeeded
Running transactionUpdating : nvidia-container-toolkit-base-1.12.0-0.1.rc.3.x86_64 1/8 Updating : libnvidia-container1-1.12.0-0.1.rc.3.x86_64 2/8 Updating : libnvidia-container-tools-1.12.0-0.1.rc.3.x86_64 3/8 Updating : nvidia-container-toolkit-1.12.0-0.1.rc.3.x86_64 4/8 Cleanup : nvidia-container-toolkit-1.11.0-1.x86_64 5/8 Cleanup : libnvidia-container-tools-1.11.0-1.x86_64 6/8 Cleanup : libnvidia-container1-1.11.0-1.x86_64 7/8 Cleanup : nvidia-container-toolkit-base-1.11.0-1.x86_64 8/8 Verifying : libnvidia-container1-1.12.0-0.1.rc.3.x86_64 1/8 Verifying : nvidia-container-toolkit-base-1.12.0-0.1.rc.3.x86_64 2/8 Verifying : libnvidia-container-tools-1.12.0-0.1.rc.3.x86_64 3/8 Verifying : nvidia-container-toolkit-1.12.0-0.1.rc.3.x86_64 4/8 Verifying : libnvidia-container-tools-1.11.0-1.x86_64 5/8 Verifying : nvidia-container-toolkit-base-1.11.0-1.x86_64 6/8 Verifying : nvidia-container-toolkit-1.11.0-1.x86_64 7/8 Verifying : libnvidia-container1-1.11.0-1.x86_64 8/8 Updated:nvidia-container-toolkit.x86_64 0:1.12.0-0.1.rc.3 Dependency Updated:libnvidia-container-tools.x86_64 0:1.12.0-0.1.rc.3 libnvidia-container1.x86_64 0:1.12.0-0.1.rc.3 nvidia-container-toolkit-base.x86_64 0:1.12.0-0.1.rc.3 Complete!
[root@bj ~]# systemctl restart docker
6. 测试docker容调用GPU服务
root@hk-MZ32-AR0-00:~# docker run --rm --gpus all 97cca2bac989 nvidia-smi
Sat Feb 11 07:13:48 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.106.00 Driver Version: 460.106.00 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 Off | 00000000:04:00.0 Off | 0 |
| N/A 47C P0 27W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla T4 Off | 00000000:06:00.0 Off | 0 |
| N/A 43C P0 28W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 2 Tesla T4 Off | 00000000:0D:00.0 Off | 0 |
| N/A 49C P0 28W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 3 Tesla T4 Off | 00000000:0F:00.0 Off | 0 |
| N/A 45C P0 26W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 4 Tesla T4 Off | 00000000:17:00.0 Off | 0 |
| N/A 48C P0 27W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 5 Tesla T4 Off | 00000000:19:00.0 Off | 0 |
| N/A 49C P0 28W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 6 Tesla T4 Off | 00000000:21:00.0 Off | 0 |
| N/A 45C P0 26W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 7 Tesla T4 Off | 00000000:23:00.0 Off | 0 |
| N/A 45C P0 28W / 70W | 0MiB / 15109MiB | 5% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
相关文章:
GPU服务器安装显卡驱动、CUDA和cuDNN
GPU服务器安装cuda和cudnn1. 服务器驱动安装2. cuda安装3. cudNN安装4. 安装docker环境5. 安装nvidia-docker25.1 ubuntu系统安装5.2 centos系统安装6. 测试docker容调用GPU服务1. 服务器驱动安装 显卡驱动下载地址https://www.nvidia.cn/Download/index.aspx?langcn显卡驱动…...
结构体变量
C语言允许用户自己建立由不同类型数据组成的组合型的数据结构,它称为结构体(structre)。 在程序中建立一个结构体类型: 1.结构体 建立结构体 struct Student { int num; //学号为整型 char name[20]; //姓名为字符串 char se…...
Java 多态
文章目录1、多态的介绍2、多态的格式3、对象的强制类型转换4、instanceof 运算符5、案例:笔记本USB接口1、多态的介绍 多态(Polymorphism)按字面意思理解就是“多种形态”,即一个对象拥有多种形态。 即同一种方法可以根据发送对…...
九龙证券|一夜暴跌36%,美股走势分化,标普指数创近2月最差周度表现
当地时间2月10日,美股三大指数收盘涨跌纷歧。道指涨0.5%,标普500指数涨0.22%,纳指跌0.61%。 受国际油价明显上升影响,动力板块领涨,埃克森美孚、康菲石油涨超4%。大型科技股走低,特斯拉、英伟达跌约5%。热门…...
【数据库】 mysql用户授权详解
目录 MySQL用户授权 一,密码策略 1,查看临时密码 2,查看数据库当前密码策略: 二, 用户授权和撤销授权 1、创建用户 2,删除用户 3,授权和回收权限 MySQL用户授权 一,密码策略…...
【性能】性能测试理论篇_学习笔记_2023/2/11
性能测试的目的验证系统是否能满足用户提出的性能指标发现性能瓶颈,优化系统整体性能性能测试的分类注:这些测试类型其实是密切相关,甚至无法区别的,例如几乎所有的测试都有并发测试。在实际中不用纠结具体的概念。而是要明确测试…...
C语言(输入printf()函数)
printf()的细节操作很多,对于现阶段的朋友来说,主要还是以理解为主。因为很多的确很难用到。 目录 一.转换说明(占位符) 二.printf()转换说明修饰符 1.数字 2.%数字1.数字2 3.整型转换字符补充 4.标记 -符号 符号 空格符…...
Zabbix 构建监控告警平台(四)
Zabbix ActionZabbix Macros1.Zabbix Action 1.1动作Action简介 当某个触发器状态发生改变(如Problem、OK),可以采取相应的动作,如: 执行远程命令 邮件,短信,微信告警,电话 1.2告警实验简介 1. 创建告警media type&…...
2004-2019年285个地级市实际GDP与名义GDP
2004-2019年285个地级市实际GDP和名义GDP 1、时间:2004-2019年 2、范围:285个地级市 3、说明:GDP平减指数采用地级市所在省份当年平减指数 4、代码: "gen rgdp gdp if year 2003 gen rgdp gdp if year 2003" re…...
Node.js笔记-Express(基于Node.js的web开发框架)
目录 Express概述 Express安装 基本使用 创建服务器 编写请求接口 接收请求参数 获取路径参数(/login/2) 静态资源托管-express.static(内置中间件) 什么是静态资源托管? express.static() 应用举例 托管多个静态资源 挂载路径前缀…...
力扣sql简单篇练习(十五)
力扣sql简单篇练习(十五) 1 直线上的最近距离 1.1 题目内容 1.1.1 基本题目信息 1.1.2 示例输入输出 1.2 示例sql语句 SELECT min(abs(p1.x-p2.x)) shortest FROM point p1 INNER JOIN point p2 ON p1.x <>p2.x1.3 运行截图 2 只出现一次的最大数字 2.1 题目内容 2…...
浅谈动态代理
什么是动态代理?以下为个人理解:动态代理就是在程序运行的期间,动态地针对对象的方法进行增强操作。并且这个动作的执行者已经不是"this"对象了,而是我们创建的代理对象,这个代理对象就是类似中间人的角色,帮…...
Idea超好用的管理工具ToolBox(附带idea工具)
文章目录为什么要用ToolBox总结idea管理安装、更新、卸载寻找ide配置、根路径idea使用准备工作配置为什么要用ToolBox 快速轻松地更新,轻松管理您的 JetBrains 工具 安装自动更新同时更新插件和 IDE回滚和降级通过下载补丁或一组补丁而不是整个包,节省维护 IDE 的…...
Spring 中 ApplicationContext 和 BeanFactory 的区别
文章目录类图包目录不同国际化强大的事件机制(Event)底层资源的访问延迟加载常用容器类图 包目录不同 spring-beans.jar 中 org.springframework.beans.factory.BeanFactoryspring-context.jar 中 org.springframework.context.ApplicationContext 国际…...
情人节有哪些数码好物值得送礼?情人节实用性强的数码好物推荐
转瞬间,情人节快到了,大家还在为送什么礼物而烦恼?在这个以科技为主的时代,人们正在享受着科技带来的便利,其中,数码产品也成为了日常生活中必不可少的存在。接下来,我来给大家推荐几款比较实用…...
java中flatMap用法
java中map是把集合每个元素重新映射,元素个数不变,但是元素值发生了变化。而flatMap从字面上来说是压平这个映射,实际作用就是将每个元素进行一个一对多的拆分,细分成更小的单元,返回一个新的Stream流,新的…...
【MySQL Shell】8.9.2 InnoDB ClusterSet 集群中的不一致事务集(GTID集)
AdminAPI 的 clusterSet.status() 命令警告您,如果 InnoDB 集群的 GTID 集与 InnoDB ClusterSet 中主集群上的 GTID 集不一致。与 InnoDB ClusterSet 中的其他集群相比,处于此状态的集群具有额外的事务,并且具有全局状态 OK_NOT_CONSISTENT 。…...
logstash毫秒时间戳转日期以及使用业务日志时间戳替换原始@timestamp
文章目录问题解决方式参考问题 在使用Kibana观察日志排查问题时发现存在很多组的timestamp 数据一样,如下所示 详细观察内部数据发现其中日志数据有一个timestamp字段保存的是业务日志的毫秒级时间戳,经过和timestamp数据对比发现二者的时间不匹配。经…...
【C语言】qsort——回调函数
目录 1.回调函数 2.qsort函数 //整形数组排序 //结构体排序 3.模拟实现qsort //整型数组排序 //结构体排序 1.回调函数 回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用来…...
8年软件测试工程师经验感悟
不知不觉在软件测试行业,野蛮生长了8年之久。这一路上拥有了非常多的感受。有迷茫,有踩过坑,有付出有收获, 有坚持! 我一直都在软件测试行业奋战, 毕业时一起入职的好友已经公司内部转岗,去选择…...
腾讯云安全组配置参考版
官方文档参考: 云服务器 安全组应用案例-操作指南-文档中心-腾讯云 新建安全组时,您可以选择腾讯云为您提供的两种安全组模板: 放通全部端口模板:将会放通所有出入站流量。放通常用端口模板:将会放通 TCP 22端口(Lin…...
代码覆盖率工具OpenCppCoverage在Windows上的使用
OpenCppCoverage是用在Windows C上的开源的代码覆盖率工具,源码地址为https://github.com/OpenCppCoverage/OpenCppCoverage ,最新发布版本为0.9.9.0,License为GPL-3.0。 从https://github.com/OpenCppCoverage/OpenCppCoverage/releases 下载…...
代码随想录算法训练营第24天25天|● 77. 组合● 216.组合总和III ● 17.电话号码的字母组合
77组合 看完题后的思路 void f(数组,startIndex)递归终止 if(startIndex数组长度||path.sizek){ if(path.sizek){ 加入} }递归 for(;startIndex<num.size;startIndex࿰…...
Python_pytorch
python_pytorch 小土堆pytotch学习视频链接 from的是一个个的包(package) import 的是一个个的py文件(file.py) 所使用的一般是文件中的类(.class) 第一步实例化所使用的类,然后调用类中的方法(def) Dataset 数据集处理 import os from PIL impo…...
【Java|golang】2335. 装满杯子需要的最短总时长
现有一台饮水机,可以制备冷水、温水和热水。每秒钟,可以装满 2 杯 不同 类型的水或者 1 杯任意类型的水。 给你一个下标从 0 开始、长度为 3 的整数数组 amount ,其中 amount[0]、amount[1] 和 amount[2] 分别表示需要装满冷水、温水和热水的…...
shell编程之sed
文章目录八、shell编程之sed8.1 工作原理8.2 sed基本语法8.3 模式空间中的编辑操作8.3.1 地址定界8.3.2 常用编辑命令8.4 sed扩展八、shell编程之sed 8.1 工作原理 sed是一种流编辑器,它是文本处理中非常有用的工具,能够完美的配合正则表达式使用&…...
安全寒假作业nginx反向代理+负载均衡上传webshell重难点+apache漏洞
1.应用场景 负载均衡作为现今解决web应用承载大流量访问问题的一种方案,在真实环境中得到广泛的部署。实现负载均衡的方式有很多种,比如 DNS 方式、HTTP 重定向方式、IP 负载均衡方式、反向代理方式等等。 比如基于dns的负载均衡: 当然还有…...
day35|01背包问题、416. 分割等和子集
01背包问题 有n件物品和一个最多能背重量为w的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。 例:背包最大重量为4。 物品为: 重量价值物品0115物品…...
Linux内核启动(3,0.11版本)内核启动完成与进入内核main函数
这一部分是在讲解head.s代码,这个代码与bootsect.s和setup.s在同一目录下,但是head.s程序在被编译生成目标文件后会与内核其他程序一起被链接成system模块,位于system模块的最前面开始部分。system模块将被放置在磁盘上setup模块之后开始的扇…...
【2023】Prometheus-Alertmanager高可用集群
本次实验准备了三个节点,分别为laert-01~03 目录1.安装Alertmanager2.配置启动文件3.验证集群4.关于集群的配置项1.安装Alertmanager 这部分内容在三个节点上都要执行 下载安装包,将安装包解压至/data目录下 wget https://github.com/prometheus/aler…...
网站建设需求文章/站外seo是什么
第5章 索引与算法 索引是应用程序设计和开发的一个重要方面, 索引过多或过少都不是好的设计,如何设计数据库达到一个平衡点是门艺术。 实际生产中,开发人员总是事后才想起添加索引,这是错误的开发模式。 DBA…...
网站开发亿玛酷给力5/自动外链工具
作者:冰雪尘沙(公告声明:本博客中注明 [原创] 的文章,如要转载请注明出处,即作者『冰雪尘沙』和本博客网址。如有任何宝贵意见敬请留言或E-mail给我,我会虚心参考改进,谢谢!) 心情、换季温差一年…...
自己做的网站外网访问/市场营销推广策划方案
一:语句块 语句块是指成块的代码,通常由若干行组成(也有的只有单条语句的语句块),和块外的代码处于不同的层次关系。 Python使用行首的缩进来标明语句块。Python 解释器没有限制在每一级缩进使用几个空格,…...
网站建设费计入什么科目/灰色词网站seo
高中信息技术 知识7数据类型、常量和变量.pptx01 | 一段似曾相识的代码Dim x As IntegerDim y As IntegerDim z As IntegerDim max As IntegerxVal(Text1.Text)yVal(Text2.Text)zVal(Text3.Text)max0If x>y Then maxx Else maxyIf z>max Then maxzText4.textStr(max)对任…...
创建网站代码/广告推广策划方案
每年收到的申请数超1,500多份,但只招收约130名学生。研究生共开设有以下4个学位项目,分别是:计算机科学理学硕士:为期2年,共需修读32个学分,其中授课部分占28个学分,毕业论文占4个学分。该项目属于研究导向…...
电子商务网站的开发原则包括/中国优化网
从腾讯安全了解到,腾讯安全反诈骗实验室追踪到暴风影音、天天看、塔读文学等众多应用中集成的某SDK存在下载恶意子包,通过webview配合js脚本在用户无感知的情况下刷百度广告的恶意操作。该恶意SDK通过众多应用开发者所开发的正规应用,途经各中…...