当前位置: 首页 > news >正文

Socket、UDP、TCP协议和简单实现基于UDP的客户端服务端

目录

Socket

TCP和UDP区别

UDP:无连接,不可靠传输,面向数据报,全双工

TCP:有连接,可靠传输,面向字节流,全双工

无连接和有连接

可靠传输和不可靠传输 

面向数据报和面向字节流 

全双工和半双工

Java中对于传输层的一些API 

DatagramSocket 

DatagramSocket构造方法 

send()和receive()方法

close()方法 

DatagramPacket 

 DatagramPacket构造方法

实现一个UDP客户端-服务端的代码 

明确服务端做的事

UDP服务端代码编写 

明确客户端做的事 

UDP客户端代码编写 

通信结果: 

为什么客户端不需要指定一个特定的端口号呢? 


Socket

我们都知道用户在进行网络通信的时候,应用层会将报文发送给传输层,发送的这个过程,应用层需要调用操作系统的一些api,准确来说就是调用传输层的api,应用层和传输层之间沟通调用的api就是Socket。严格意义上讲,socket的api属于传输层。

TCP和UDP就是Socke的apit提供的两种不同的风格。

TCP和UDP区别

UDP:无连接,不可靠传输,面向数据报,全双工

TCP:有连接,可靠传输,面向字节流,全双工

无连接和有连接

无连接:不确保接收方是否接收到信息。比如发短信,发微信都是无连接通信,不需要对方在线什么的就能直接把要传递的信息发送出去

有连接:确保接收方会收到信息 。比如打电话,打视频,需要对方接起才能让双方进行信息的传递

原因:UDP协议当中发送方和接收方的运输层进程之间没有建立握手,只负责把应用层的报文打包成UDP报文段进行发送,不关注接收方是否能收到,所以UDP协议是无连接的。而TCP协议在传输数据之前会进行“三次握手”来确保接收方是能够收到信息的,所以TCP协议是有连接的

可靠传输和不可靠传输 

可靠传输就是发送方发送完信息后,接收方如果收到了信息,发送方可以知晓接收方已经收到了信息,比如有些聊天的已读功能

不可靠传输就是发送方发送完信息后,不知道接收方是否收到了信息,比如微信聊天,发送方并不知道接收方是否接受到信息。

面向数据报和面向字节流 

UDP协议就是面向数据报的协议。

传输层协议是以数据报为基本单位进行传输的,操作系统不会对消息进行拆分,也就是直接把应用层传过来的报文打包为UDP数据段,然后传输到网络层 

而TCP协议是面向字节流的协议。

TCP把数据看成一个没有结构的,但是有序的字节流。

当使用TCP协议进行传输的时候,一条应用层消息可能会被操作系统分成多个TCP报文。也就是说应用层发送过来的报文会被拆分成多个数据段,比如:|

应用层打算发送Hello This is Java,使用TCP协议就有可能拆分成两个TCP段:

也有可能只有一个TCP段。

而对于UDP协议是不会拆分的:

全双工和半双工

全双工:一个通信通道可以双向传输(既可以发送,又可以接收) 比如很多道路都是可以双向通行的

半双工:通信通道只能单向传输(只能发送或接收) 比如青藏铁路这样的,只能单向通行。

Java中对于传输层的一些API 

DatagramSocket 

在操作系统中一切皆为文件。

使用DatagramSocket这个类,可以创建socket对象,操作系统中把这个socket当做一个文件来处理,相当于文件描述符表上的某一项。 

使用一个socket对象就可以和另外一个主机进行通信了,如果要和多个主机进行通信,可以创建多个socket对象。 

DatagramSocket构造方法 

DatagramSocket()   系统自动分配一个空闲的端口号

DatagramSocket(int port)   指定端口号,将socket和对应的端口相关联。

send()和receive()方法

void send(DatagramPacket packet)  代表socket发送应用层报文的方式
void receive(DatagramPacket packet) 代表socket接收应用层报文的方式

需要发送/接收的DatagramPackett就是一个应用层报文。 

close()方法 

用于关闭文件描述符表项,释放进程当中的文件描述符表项所占用的空间。

DatagramPacket 

表示的是UDP当中传输的一个应用层报文 

 DatagramPacket构造方法

DatagramPacket(byte[] buf,int length)把buf数组作为地址
DatagramPacket(byte[] buf,int offset,int length,SocketAddress)把buf数组作为地址,并且指定了需要传输的目标主机IP和端口号

实现一个UDP客户端-服务端的代码 

假设约定:客户端是运行在用户手中的,服务器是运行在我们程序员自己的电脑 。

明确服务端做的事

1、读取客户端的请求

2、根据请求计算响应

3、将响应返回给客户端 

需要指定的属性:DatagramSocket socket(socket对象) 用来为客户端提供socket来接收应用层报文

构造方法当中初始化socket对象,并且指定本机当中需要建立通信的端口号。 

 注意:应用层和传输层建立连接的时候一定要指明socket端口号,不然就会导致选用无参构造方法,无法明确UDP和应用层的哪个端口建立联系,从而无法通信。 

UDP服务端代码编写 

import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.SocketAddress;
import java.net.SocketException;public class UdpEchoServer2 {//与服务端建立联系的socketprivate DatagramSocket datagramSocket;//使用构造方法并传入端口(关联端口)public UdpEchoServer2(int port) throws SocketException {//创建对象datagramSocket=new DatagramSocket(port);//port是服务端进程端口号}//创建start方法作为服务器启动public void start() throws IOException {System.out.println("服务器启动!");while(true){//1、packet存放接收应用层内容DatagramPacket receivePacket=new DatagramPacket(new byte[4096],4096);//2、使用socket来接收应用层信息并将其存放在packet的byte数组中datagramSocket.receive(receivePacket);//3、截取byte数组中应用层信息的实际长度的内容,比如hello就截取hello长度的内容//也就是获取数据报的实际长度部分String request = new String(receivePacket.getData(),0,receivePacket.getLength());//4、模拟回显服务器,将提取出来的数据报传给process进行处理并把响应赋值给responseString response= process(request);//5、将响应字符串转化为字节数组byte[] responseByte=response.getBytes();//6、获取响应数组长度int responseByteLength= responseByte.length;//7、获取对应的客户端的IP和端口号(SocketAddress)根据packet的信息获取对应的地址SocketAddress address = receivePacket.getSocketAddress();//8、构造返回给客户端的socket对象DatagramPacket responsePacket=new DatagramPacket(responseByte,responseByteLength,address);//9、使用构造的socket对象将响应发送给客户端datagramSocket.send(responsePacket);//输出处理结果作为验证System.out.println("客户端IP:"+receivePacket.getAddress()+"客户端端口号:"+receivePacket.getPort());}}//服务器响应public String process(String request){return "udp服务器已响应"+request;}//服务端启动public static void main(String[] args) throws IOException {UdpEchoServer2 udpEchoServer2=new UdpEchoServer2(9090);udpEchoServer2.start();}}

启动服务端:(指定服务器端口号为9090)此时启动后服务器正常启动,但是由于客户端没有向服务端发送任何请求,所以服务端会在receive方法出进行阻塞等待。

    public static void main(String[] args) throws IOException {UdpEchoServer2 udpEchoServer2=new UdpEchoServer2(9090);udpEchoServer2.start();}

  

明确客户端做的事 

客户端主要做的事就是和服务端建立通信,并且为服务端的receive方法内部的数据(DatagramPacket)等待服务端的send方法发送数据(DatagramPacket)回来并做出响应

UDP客户端代码编写 

import java.io.IOException;
import java.net.*;
import java.util.Scanner;public class UdpEchoClient {/*** 客户端需要有的属性:* 1、和服务端建立联系的socket* 2、服务端的ip地址* 3、服务端的端口号*/private DatagramSocket socket;//和服务端建立联系的socketprivate String serverIp;//服务端的ip地址(目的IP)private int serverPort;//服务端的端口号(目的端口)//构造方法public UdpEchoClient(String serverIp,int serverPort) throws SocketException {socket=new DatagramSocket();this.serverIp=serverIp;this.serverPort=serverPort;}//启动客户端public void start() throws IOException {System.out.println("客户端已启动!");Scanner input=new Scanner(System.in);while(true){//1.用户从控制台输入想要发送给服务端的数据System.out.println("请输入您想要发送给服务端的数据:");String request= input.next();//2、构造Udp请求//将请求转为请求数组byte[] requestBytes=request.getBytes();//获取请求数组的长度int length= requestBytes.length;//3、指定服务端的ip和端口号DatagramPacket requestPacket=new DatagramPacket(requestBytes,length,InetAddress.getByName(serverIp),serverPort);//4、将请求发送到服务端的receive方法中socket.send(requestPacket);//5、读取并接收服务端的响应结果DatagramPacket responsePacket=new DatagramPacket(new byte[4096],4096);//存放读取的结果//接收服务端的响应socket.receive(responsePacket);//6、构造响应的字符串String response=new String(responsePacket.getData(),0,responsePacket.getLength());//7、输出响应的字符串System.out.println(response);}}public static void main(String[] args) throws IOException {UdpEchoClient udpEchoClient=new UdpEchoClient("127.0.0.1",9090);udpEchoClient.start();//客户端启动}}

先启动服务端,再启动客户端,否则无法顺利完成通信。

通信结果: 

 

客户端和服务端通信的流程图解:

 

为什么客户端不需要指定一个特定的端口号呢? 

首先,客户端指定特定的端口号,如果该端口号被占用,那么就无法取得和服务端的通信了,会抛出BindException异常。其次,客户端是不可控的,因为客户端往往是有很多台的,不同客户端的程序运行情况我们是不知道的,无法有效的进行控制,这些不受到我们程序员的控制,所以不如让客户端自由分配一个可以使用的端口号即可,而服务端是可控的,程序员可以手动的控制服务端的端口占用情况是非常方便的,如果是随机分配的反而会提高程序员的工作难度。 

相关文章:

Socket、UDP、TCP协议和简单实现基于UDP的客户端服务端

目录 Socket TCP和UDP区别 UDP:无连接,不可靠传输,面向数据报,全双工 TCP:有连接,可靠传输,面向字节流,全双工 无连接和有连接 可靠传输和不可靠传输 面向数据报和面向字节流…...

发布订阅模式:观察者模式的一种变体

发布-订阅模型(Publish-Subscribe Model)的底层机制通常基于观察者模式。 发布-订阅模型是观察者模式的一种变体。 在观察者模式中,主题(或被观察者)维护了一组观察者,当主题的状态发生变化时&#xff0c…...

TiDB离线部署、Tiup部署TiDB

先做tidb准备工作: 部署 TiDB 前的环境检查操作:TiDB 环境与系统配置检查 | PingCAP 文档中心 1.查看数据盘 fdisk -l (2,3)本人的分区已经是 ext4 文件系统不用分区,具体官方文档的分区: 4.查看数据盘…...

10GBase-T万兆电口模块助力数据中心实现高效数据传输

10GBase-T万兆电口模块一种高速、高效的网络连接解决方案,具有快速传输速度和稳定可靠的特点。它可以在数据中心中广泛应用,提供出色的网络性能和可扩展性,为数据中心的发展做出了重要的贡献。 一、10GBase-T万兆电口模块的特点与优势 高速传…...

使用Docker中部署GitLab 避坑指南

在容器化的世界中,Docker已经成为了我们部署和管理应用程序的首选工具。然而,在使用Docker部署GitLab时,我们可能会遇到一些问题,本文将为你提供一份详细的避坑指南。网上的教程有的都没说清楚,或者干脆是错的。摸索了…...

我的NPI项目之设备系统启动(八) -- Android14的GKI2.0开发步骤和注意事项

GKI是什么? Google为什么要推行GKI? GKI全称General Kernel Image。GKI在framework和kernel之间提供了标准接口,使得android OS能够轻松适配/维护/兼容不同的设备和linux kernel。 Google引入GKI的目的是将Framework和Kernel进一步的解耦。因…...

鼠标右键助手专业版 MouseBoost PRO for Mac v3.3.6中文破解

MouseBoost Pro mac版是一款简单实用的鼠标右键助手专业版,MouseBoost Pro for Mac只要轻点你的鼠标右键,就可以激活你想要的各种功能,让你的工作效率大幅度提高,非常好用。 软件下载:MouseBoost PRO for Mac v3.3.6中…...

React学习计划-react-hooks补充

React Hooks 1. 使用hooks理由 高阶组件为了复用,导致代码层级复杂生命周期的复杂 2. useState(保存组件状态) const [state, setstate] useState(initialState)3. useEffect(处理副作用)和useLayoutEffect(同步执行副作用) 使用方式: useEffect(…...

KTV点歌系统vue+springboot音乐歌曲播放器系统

目前现有的KTV点歌系统对于用户而言其在线点歌流程仍然过于繁琐,对于歌曲而言其系统安全性并不能保障。同时整套系统所使用的技术相对较为落后,界面不能动态化展示。相比较于其它同类型网站而言不能体现技术先进性。 1.2 项目目标 KTV点歌系统的后台开发…...

vue video 多个视频切换后视频不显示的解决方法

先说一下我这边的需求是视频需要轮播&#xff0c;一个人员有多个视频&#xff0c;左右轮播是轮播某个人员下的视频&#xff0c;上下切换是切换人员。 vue 代码 <el-carouselindicator-position"none"ref"carousel"arrow"always":interval&qu…...

多态与代码屎山

到底什么是多态呢?多态是面向未来的,比如企业采购为例: 一般分为线上合线下两种, 我们设计一个父类叫做"采购", 里面做一些共通的处理: 申请, 承认, 支付, 购买方式. 然后让各自的子类(线上,线下)实现自己的方法.实际调用过程中传入不同的对象就可以.到此为止项目开…...

Git基本操作(2)

Git基本操作&#xff08;2&#xff09; 上交文件之后&#xff0c;git文件的变化git cat-file HEAD指针里面有啥文件被修改git statusgit diff 文件名 版本回退&#xff08;git reset&#xff09;撤销回退git reflog 撤销的三种情况还没有addgit checkout -- [file] 已经add还没…...

编程笔记 Golang基础 023 切片

编程笔记 Golang基础 023 切片 一、切片二、定义与初始化三、基本操作四、示例 Go语言中的切片&#xff08;slices&#xff09;是基于数组的抽象数据类型&#xff0c;它提供了一种灵活的方式来处理可变长度的数据序列。切片本身不存储任何数据&#xff0c;而是指向底层数组的一…...

qt 软件发布(Windows)

1. 开发环境 QtCreator MSVC编译器 2. 源码编译 生成release或者debug版本的exe可执行文件(x64或x86) 3. windeployqt 打包 ①左下角开始菜单栏找到QT的命令交互对话框&#xff0c;如下图MSVC 2017 64-bit(根据第二步编译的类型选择64位或者32位)。 ②cd 切换到第二步可…...

《汇编语言》- 读书笔记 - 第11章-标志寄存器

《汇编语言》- 读书笔记 - 第11章-标志寄存器 标志寄存器指令与标志位关系11.1 ZF&#xff08;Zero Flag&#xff0c;零标志位&#xff09;11.2 PF&#xff08;Parity Flag&#xff0c;奇偶标志位&#xff09;11.3 SF&#xff08;Sign Flag&#xff0c;符号标志位&#xff09;处…...

1.QT简介(介绍、安装,项目创建等)

1. QT介绍 Qt&#xff08;官方发音 [kju:t]&#xff09;是一个跨平台的C开发库&#xff0c;主要用来开发图形用户界面&#xff08;Graphical User Interface&#xff0c;GUI&#xff09;程序 Qt 是纯 C 开发的&#xff0c;正常情况下需要先学习C语言、然后在学习C然后才能使用…...

【服务器】服务器推荐

一、引言 在数字世界的浪潮中&#xff0c;服务器作为数据存储和处理的基石&#xff0c;其重要性不言而喻。而在这个繁星点点的市场中&#xff0c;雨云以其独特的优势和超高的性价比&#xff0c;逐渐成为众多企业和个人的首选。今天&#xff0c;就让我带你走进雨云的世界&#…...

信号系统之线性图像处理

1 卷积 图像卷积的工作原理与一维卷积相同。例如&#xff0c;图像可以被视为脉冲的总和&#xff0c;即缩放和移位的delta函数。同样&#xff0c;线性系统的特征在于它们如何响应脉冲。也就是说&#xff0c;通过它们的脉冲响应。系统的输出图像等于输入图像与系统脉冲响应的卷积…...

uniapp腾讯地图JavaScript Api,H5端和原生APP端可用

因项目需要&#xff0c;在uniapp中集成使用腾讯地图&#xff0c;为了方便维护&#xff0c;希望通过一套代码实现H5和APP同时可用。H5显示相对简单&#xff0c;APP端比较麻烦&#xff0c;记录下实现过程 一、集成步骤 1.使用 renderjs script标签使用renderjs&#xff0c;因为…...

MyBatisPlus:PG数组类型自动映射问题

引言: PostGreSQL数据库提供了丰富的数据类型,通过查看官网文档,我们也可以发现,PG也提供了对数组类型的支持。 但是在实际开发中,我们通常是使用MyBatis/MyBatisPlus这种半自动ORM映射框架来实现数据库/表数据基本的增删改查,以及其它操作。那么,问题来了,如何…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...