【MATLAB】 EWT信号分解+FFT傅里叶频谱变换组合算法
有意向获取代码,请转文末观看代码获取方式~
展示出图效果


1 EWT分解算法
EWT分解算法是一种基于小波变换的信号分解算法,它可以将信号分解为一系列具有不同频率特性的小波分量。该算法的基本思想是将信号分解为多个不同尺度的小波分量,并对每个小波分量进行频域分析。
EWT分解算法具有以下优点:
-
具有良好的频率局部特性,能够准确地提取信号的频率信息。
-
能够适应各种类型的信号,具有较好的通用性。
-
能够有效地处理高频信号,对于突变信号有较好的适应性。
-
能够避免小波变换中的吉布斯现象,对于信号的细节信息有较好的保留。
在应用方面,EWT分解算法可以应用于信号处理、图像处理、地震信号处理等领域,是一种有效的信号分析方法。
MATLAB 信号分解第十期-EWT 分解:
信号分解全家桶详情请参见:
2 FFT傅里叶频谱变换算法
傅里叶变换是一种数学方法,用于将一个信号分解成一系列正弦和余弦函数的和,从而更好地理解和处理信号。傅里叶变换在信号处理领域有着广泛的应用,包括音频处理、图像处理等。 具体来说,傅里叶变换的步骤如下:
-
给定一个连续时间域函数f(t),其中t为时间。
-
对f(t)进行傅里叶变换,得到它的频率域表示F(ω),其中ω为角频率。
-
F(ω)表示了f(t)中所有频率分量的幅度和相位信息。
-
将F(ω)分解成一系列正弦和余弦函数的和,即: F(ω) = ∑[a(k)cos(kω) + b(k)sin(kω)] 其中,k为频率分量的序号,a(k)和b(k)分别为对应的正弦和余弦函数的系数。 傅里叶变换的优点是可以将时间域中的信号转换成频率域中的信号,从而更好地理解信号的频率分量和周期性特征,同时也方便进行一些信号处理任务,例如滤波、降噪等。缺点是傅里叶变换需要对整个信号进行处理,计算量较大,在实时处理等场景下可能会存在较大的延迟。
MATLAB | 频谱分析算法 | 傅里叶变换 开源 MATLAB 代码请转:
MATLAB | 9种频谱分析算法全家桶详情请参见:
3 EWT信号分解+FFT傅里叶频谱变换组合算法
如下为简短的视频操作教程。
【MATLAB 】 EWT信号分解+FFT傅里叶频谱变换组合算法请转:
【MATLAB 】信号分解+FFT傅里叶频谱变换组合算法全家桶详情请参见:
关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~
代码见附件
相关文章:
【MATLAB】 EWT信号分解+FFT傅里叶频谱变换组合算法
有意向获取代码,请转文末观看代码获取方式~ 展示出图效果 1 EWT分解算法 EWT分解算法是一种基于小波变换的信号分解算法,它可以将信号分解为一系列具有不同频率特性的小波分量。该算法的基本思想是将信号分解为多个不同尺度的小波分量,并对…...
MATLAB中,如何捕获和处理异常?如何在MATLAB中自定义错误消息?在MATLAB中,error函数和warning函数有什么区别?
MATLAB中,如何捕获和处理异常? 在MATLAB中,捕获和处理异常通常使用try-catch语句。try块包含可能引发异常的代码,而catch块则包含当异常发生时执行的代码。以下是如何在MATLAB中捕获和处理异常的基本步骤: 使用try关键…...
【算法与数据结构】127、LeetCode单词接龙
文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:示例1为例,hit到达cog的路线不止一条,如何找到最短是关键。广度优先搜索是一圈…...
CAN——创建一个数据库DBC文件
一、创建一个工程 file——new——can 500kbaud1ch 得到一个工程文件.cfg 二、实现两个节点通讯 can networks 三、创建数据库DBC tool——candbeditor——file——creatdatabase——cantemplate.dbc 1.建数值表 view——value tables——空白处右击add—— definition 定…...
(十三)【Jmeter】线程(Threads(Users))之tearDown 线程组
简述 操作路径如下: 作用:在正式测试结束后执行清理操作,如关闭连接、释放资源等。配置:设置清理操作的采样器、执行顺序等参数。使用场景:确保在测试结束后应用程序恢复到正常状态,避免资源泄漏或对其他测试的影响。优点:提供清理操作,确保测试环境的整洁和可重复性…...
MySQL数据库基础(十三):关系型数据库三范式介绍
文章目录 关系型数据库三范式介绍 一、什么是三范式 二、数据冗余 三、范式的划分 四、一范式 五、二范式 六、三范式 七、总结 关系型数据库三范式介绍 一、什么是三范式 设计关系数据库时,遵从不同的规范要求,设计出合理的关系型数据库&…...
掌控互联网脉络:深入解析边界网关协议(BGP)的力量与挑战
BGP简介 边界网关协议(Border Gateway Protocol,BGP)是互联网上最重要的路由协议之一,负责在不同自治系统(AS)之间传播路由信息。BGP使得互联网中的不同网络可以互相通信,支持互联网的规模化扩…...
Vue2页面转化为Vue3
vue2element-ui转化为Vue3element plus 后台管理系统:增删查改 vue2页面: <template><div class"app-container"><div><el-form:model"queryParams"ref"queryForm"size"small":inline&qu…...
【课程作业】提取图中苹果的面积、周长和最小外接矩形的python、matlab和c++代码
提取图中苹果的面积、周长和最小外接矩形 在图像处理中,提取对象的关键属性是常见的任务之一。本文将演示如何使用三种流行的编程语言——Python、Matlab和C,利用相应的图像处理库(OpenCV或Matlab内置函数)来提取图像中苹果的面积…...
解决easyExcel模板填充时转义字符\{xxx\}失效
正常我们在使用easyExcel进行模板填充时,定义的变量会填充好对应的实际数据,未定义的变量会被清空,但是如果这个未定义的变量其实是模板的一部分,那么清空了就出错了。 在这张图里,上面的是模板填充后导出的文件&…...
在项目中使用CancelToken选择性取消Axios请求
Axios 提供了 CancelToken 类来创建取消标记。取消标记实际上是一个包含 token 标记和 cancel 方法的对象。 1、基本使用方法 const CancelToken axios.CancelToken; const source CancelToken.source();axios.get(/user/12345, {cancelToken: source.token }).catch(functi…...
[c++] 记录一次引用使用不当导致的 bug
在工作中看到了如下代码,代码基于 std::thread 封装了一个 Thread 类。Thread 封装了业务开发中常用的接口,比如设置调度策略,设置优先级,设置线程名。如下代码删去了不必要的代码,只保留能说明问题的代码。从代码实现…...
能不能节约百分之九十的算力来训练模型
Sora是由OpenAI开发的视频生成模型,它采用了多种先进的技术和架构,能够根据文本描述生成长达一分钟的高清视频。虽然OpenAI并未公开Sora的详细模型架构和实现细节,但我们可以根据公开的信息和参考论文来了解其技术架构。 Sora的核心技术架构主…...
LeetCode206: 反转链表.
题目描述 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 示例 解题方法 假设链表为 1→2→3→∅,我们想要把它改成∅←1←2←3。在遍历链表时,将当前节点的 next指针改为指向前一个节点。由于节点没有引用其前一…...
高级统计方法 第1次作业
概念 1. 请解释什么是P值,怎么计算p值,p值结果怎么理解,p值有哪些应用......? (a)什么是P值 P值是一种用来判定假设检验结果的一个参数,它描述了在原假设为真的情况下,比所得到的…...
spinalhdl,vivado,fpga
https://spinalhdl.github.io/SpinalDoc-RTD/master spinal hdl sudo apt install openjdk-17-jdk scala curl echo “deb https://repo.scala-sbt.org/scalasbt/debian all main” | sudo tee /etc/apt/sources.list.d/sbt.list echo “deb https://repo.scala-sbt.org/scal…...
Tomcat线程池原理(下篇:工作原理)
文章目录 前言正文一、执行线程的基本流程1.1 JUC中的线程池执行线程1.2 Tomcat 中线程池执行线程 二、被改造的阻塞队列2.1 TaskQueue的 offer(...)2.2 TaskQueue的 force(...) 三、总结 前言 Tomcat 线程池,是依据 JUC 中的线程池 ThreadPoolExecutor 重新自定义…...
【服务器数据恢复】通过reed-solomon算法恢复raid6数据的案例
服务器数据恢复环境: 一台网站服务器中有一组由6块磁盘组建的RAID6磁盘阵列,操作系统层面运行MySQL数据库和存放一些其他类型文件。 服务器故障: 该服务器在工作过程中,raid6磁盘阵列中有两块磁盘先后离线,不知道是管理…...
LeetCode 2583.二叉树中的第 K 大层和:层序遍历 + 排序
【LetMeFly】2583.二叉树中的第 K 大层和:层序遍历 排序 力扣题目链接:https://leetcode.cn/problems/kth-largest-sum-in-a-binary-tree/ 给你一棵二叉树的根节点 root 和一个正整数 k 。 树中的 层和 是指 同一层 上节点值的总和。 返回树中第 k …...
element ui 安装 简易过程 已解决
我之所以将Element归类为Vue.js,其主要原因是Element是(饿了么团队)基于MVVM框架Vue开源出来的一套前端ui组件。我最爱的就是它的布局容器!!! 下面进入正题: 1、Element的安装 首先你需要创建…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
