当前位置: 首页 > news >正文

C++面试:内存溢出、内存泄漏的原因与解决

目录

内存溢出(Memory Overflow)

内存溢出介绍

解决内存溢出问题的方法

内存泄漏(Memory Leak)

内存泄露基础

解决内存泄漏问题的方法


内存溢出(Memory Overflow)

内存溢出介绍

        内存溢出是指程序在执行过程中,请求分配的内存超过了系统所能提供的内存大小或者进程所能使用的内存大小。这通常会导致程序崩溃或异常终止。内存溢出的原因可能包括:

申请内存过多: 程序中申请了大量的动态内存,但未正确释放,导致内存耗尽。

#include <iostream>
#include <cstdlib>using namespace std;void memoryOverflow() {while (true) {// 申请动态内存,但未释放int *ptr = new int[1000000]; // 每次申请100万个int大小的内存// 检查内存是否成功分配if (ptr == nullptr) {cerr << "Memory allocation failed!" << endl;return;}// 未释放内存,导致内存耗尽}
}int main() {memoryOverflow();return 0;
}

        在这个示例中,memoryOverflow() 函数会不断地申请大量的动态内存,但是没有释放。每次循环都申请了100万个int大小的内存,这会导致内存耗尽,最终可能导致程序崩溃或异常终止。

        要解决这个问题,需要在动态内存分配后适时释放已申请的内存。可以使用deletedelete[]来释放单个对象或数组,或者考虑使用智能指针等RAII(资源获取即初始化)的技术来自动管理内存。在实际开发中,正确管理内存分配和释放是非常重要的,以避免内存泄漏和内存溢出等问题。

递归调用导致栈溢出: 如果递归调用的层数过深,会导致函数调用栈溢出。

#include <iostream>using namespace std;// 递归调用导致栈溢出的示例
void recursiveFunc(int count) {int array[1000]; // 局部数组,占用栈空间// 递归调用if (count > 0) {recursiveFunc(count - 1);}
}int main() {recursiveFunc(10000); // 递归调用次数过多return 0;
}

        在这个示例中,recursiveFunc() 函数展示了递归调用导致函数调用栈溢出的情况。每次函数调用都会在栈上分配一定的空间,当递归层数过深时,栈空间将被耗尽,导致栈溢出。

        要解决这个问题,可以考虑使用迭代替代递归,或者优化算法以减少递归的深度。另外,可以通过增加栈空间的方式来缓解栈溢出的问题,但这种方法并不是根本性的解决办法,因为栈空间是有限的。在实际开发中,需要注意避免递归调用的层数过深,以及使用合适的算法和数据结构来避免栈溢出问题。

 

数据结构设计不当: 如果数据结构设计不合理,可能会导致内存的过度分配或者冗余分配。

#include <iostream>
#include <vector>using namespace std;// 不合理的数据结构设计示例:使用vector存储大量重复数据
void inefficientDataStructure() {vector<int> data; // 使用vector存储数据// 向vector中添加大量重复数据for (int i = 0; i < 1000000; ++i) {data.push_back(42); // 添加重复数据}
}int main() {inefficientDataStructure();return 0;
}

        在这个示例中,inefficientDataStructure() 函数展示了一种不合理的数据结构设计。在循环中,大量重复的数据被添加到了vector中。由于vector会自动调整大小以容纳新元素,这可能导致内存的过度分配。此外,由于存储了大量重复数据,也存在冗余分配的情况。

        要解决这个问题,可以考虑使用更合适的数据结构来避免内存过度分配和冗余分配,例如使用std::setstd::unordered_set来存储唯一的元素,或者使用更适合大量重复数据的数据结构。在实际开发中,正确选择和设计数据结构对于程序的性能和内存占用是非常重要的。

 

解决内存溢出问题的方法

仔细管理内存分配和释放: 确保每次申请内存后都有相应的释放操作。

#include <iostream>using namespace std;// 仔细管理内存分配和释放的示例
void manageMemory() {// 申请动态内存int *ptr = new int(42);// 检查内存是否成功分配if (ptr == nullptr) {cerr << "Memory allocation failed!" << endl;return;}// 使用内存cout << "Value: " << *ptr << endl;// 释放内存delete ptr;
}int main() {manageMemory();return 0;
}

        在这个示例中,manageMemory() 函数展示了如何仔细管理内存分配和释放。首先,使用new操作符申请了一个int大小的动态内存,并将其赋值为42。然后,检查内存是否成功分配。接着,使用内存并打印其值。最后,使用delete操作符释放了动态内存。

        通过这种方式,确保每次申请内存后都有相应的释放操作,可以避免内存泄漏问题,并有效地管理内存资源。在实际开发中,始终记得在不再需要使用动态分配的内存时及时释放它们是非常重要的。

 

使用静态分析工具: 使用工具来检测代码中潜在的内存泄漏或者内存溢出问题。

静态分析工具是一种检测代码中潜在问题的工具,包括但不限于内存泄漏和内存溢出。下面我将以Cppcheck和Valgrind两个常用的工具为例,来演示如何使用它们来检测C++代码中的内存问题。

1. 使用Cppcheck进行静态分析

        Cppcheck是一个开源的静态代码分析工具,可用于检查C/C++代码中的各种问题,包括内存泄漏和内存溢出。

        假设我们有以下简单的C++代码:

#include <iostream>using namespace std;int main() {int* ptr = new int;*ptr = 10;cout << "Value: " << *ptr << endl;// delete ptr; // 注释掉释放内存的语句return 0;
}

        我们故意注释掉了释放内存的语句 delete ptr;,以模拟一个内存泄漏的情况。

        接下来,我们可以使用Cppcheck对这段代码进行分析:

cppcheck --enable=all --inconclusive your_file.cpp

        Cppcheck将会检测到这段代码中存在一个潜在的内存泄漏,并给出相应的警告。

2. 使用Valgrind进行内存检测

        Valgrind是一个强大的内存调试和性能分析工具,其中的Memcheck工具可以检测内存泄漏、内存访问越界等问题。

        编译并运行程序:

g++ -g your_file.cpp -o your_program
valgrind --leak-check=full ./your_program

        Valgrind会运行程序并监视其内存使用情况,包括未释放的内存。如果存在内存泄漏,Valgrind将输出相应的警告信息,指出泄漏的位置和大小。

        总结:静态分析工具如Cppcheck和动态分析工具如Valgrind都可以帮助我们检测C++代码中的内存问题。在实际开发中,结合使用这些工具可以有效地发现和解决内存泄漏和内存溢出等问题,提高代码质量和稳定性。

优化算法和数据结构: 确保使用高效的算法和数据结构,避免不必要的内存占用。

限制资源使用: 设置适当的资源使用限制,防止程序过度消耗内存。

        以下是一个简单的C++代码示例,展示了如何设置适当的资源使用限制,防止程序过度消耗内存:

#include <iostream>
#include <vector>
#include <cstdlib>
#include <sys/resource.h>using namespace std;// 设置资源使用限制
void setResourceLimit() {// 设置虚拟内存使用限制为100MBrlimit limit;limit.rlim_cur = 100 * 1024 * 1024; // 100MB,当前限制limit.rlim_max = 100 * 1024 * 1024; // 100MB,最大限制setrlimit(RLIMIT_AS, &limit);
}// 示例函数,可能会消耗大量内存
void consumeMemory() {vector<int> numbers;for (int i = 0; i < 1000000; ++i) {numbers.push_back(i);}
}int main() {// 设置资源使用限制setResourceLimit();// 执行可能消耗大量内存的函数consumeMemory();return 0;
}

        在这个示例中,setResourceLimit() 函数设置了虚拟内存使用限制为100MB,这样程序就不能超过这个限制消耗内存。然后,consumeMemory() 函数可能会消耗大量内存,但由于已经设置了资源使用限制,程序将受到限制并在超出限制时终止或引发异常,而不会过度消耗内存。

        通过设置适当的资源使用限制,可以有效地防止程序过度消耗内存,提高系统的稳定性和安全性。在实际开发中,根据程序的需求和系统的限制,可以设置不同的资源使用限制。 

内存泄漏(Memory Leak)

内存泄露基础

内存泄漏是指程序中分配的内存未能被释放,导致系统中有大量无法访问的内存块,最终耗尽系统内存资源。内存泄漏的原因可能包括:

未释放动态分配的内存: 程序中分配的内存未被释放,导致内存泄漏。

#include <iostream>using namespace std;// 内存泄漏示例函数
void memoryLeak() {// 未释放动态分配的内存int* ptr = new int(10);// 没有调用delete释放内存
}int main() {memoryLeak(); // 调用可能导致内存泄漏的函数// 此时ptr指针所指向的内存未被释放,造成内存泄漏return 0;
}

        在这个示例中,memoryLeak() 函数动态分配了一个整型变量的内存,但在函数结束后未调用 delete 来释放内存。因此,当 memoryLeak() 函数执行结束后,指向动态分配内存的指针 ptr 丢失了作用域,而该内存却没有被释放,从而导致了内存泄漏。

        要解决这个问题,可以在使用完动态分配内存后,确保调用 delete 来释放已分配的内存,如下所示:

 

void noMemoryLeak() {int* ptr = new int(10);cout << "Value: " << *ptr << endl;delete ptr; // 使用完内存后释放
}

循环引用: 对象之间存在循环引用,导致垃圾回收器无法释放内存。

        在 C++ 中,没有内建的垃圾回收机制,但可以通过智能指针来管理内存,其中 std::shared_ptr 是一个引用计数智能指针,可以用来解决循环引用的问题。下面是一个简单的示例代码,演示了如何使用 std::shared_ptr 来解决循环引用导致的内存泄漏问题:

#include <iostream>
#include <memory> // 包含智能指针头文件using namespace std;// 前向声明
class B;class A {
public:void setB(shared_ptr<B> b) {b_ = b;}private:shared_ptr<B> b_;
};class B {
public:void setA(shared_ptr<A> a) {a_ = a;}private:shared_ptr<A> a_;
};int main() {// 创建两个对象A和Bshared_ptr<A> a = make_shared<A>();shared_ptr<B> b = make_shared<B>();// 设置彼此之间的引用a->setB(b);b->setA(a);// 此时a和b彼此之间存在循环引用// 当 a 和 b 超出作用域后,智能指针将自动管理内存,避免内存泄漏return 0;
}

        在这个示例中,类 A 和类 B 之间存在循环引用,每个类都拥有一个指向另一个类对象的 shared_ptr。这种情况下,如果只是使用原始指针,会造成内存泄漏,因为即使没有任何对象对其进行引用,循环引用也会阻止这些对象被销毁。

        但是,由于使用了 std::shared_ptr,每个对象的生命周期都由 shared_ptr 的引用计数来管理。当 main() 函数结束时,shared_ptr 对象 ab 超出作用域,它们的引用计数会减少,当引用计数为 0 时,shared_ptr 会自动释放所指向的内存,避免内存泄漏。

 

解决内存泄漏问题的方法

  1. 使用自动垃圾回收器: 自动垃圾回收器能够自动识别不再被引用的对象并释放其内存。
  2. 使用内存分析工具: 使用内存分析工具来检测程序中的内存泄漏问题,并定位到具体的代码位置。
  3. 合理设计数据结构: 避免循环引用等设计上的问题,确保对象能够被垃圾回收器正确释放。
  4. 及时清理缓存: 确保缓存中的对象在不再需要时能够及时清理,防止对象长时间占用内存。

        

        在面试中,对于内存溢出和内存泄漏的理解以及解决方法的掌握是很重要的,因为它们涉及到了程序性能和稳定性等关键问题。

相关文章:

C++面试:内存溢出、内存泄漏的原因与解决

目录 内存溢出&#xff08;Memory Overflow&#xff09; 内存溢出介绍 解决内存溢出问题的方法 内存泄漏&#xff08;Memory Leak&#xff09; 内存泄露基础 解决内存泄漏问题的方法 内存溢出&#xff08;Memory Overflow&#xff09; 内存溢出介绍 内存溢出是指程序在执…...

【Java程序员面试专栏 算法思维】二 高频面试算法题:二分查找

一轮的算法训练完成后,对相关的题目有了一个初步理解了,接下来进行专题训练,以下这些题目就是汇总的高频题目,本篇主要聊聊二分查找,包括基础二分,寻找目标值的左右边界,搜索旋转数组以及波峰,以及x的平方根问题,所以放到一篇Blog中集中练习 题目关键字解题思路时间空…...

kaldi 详细安装教程、PyTorch-Kaldi、TIMIT下载、Librispeech下载

kaldi 详细安装教程 本kaldi 安装教程 转载于该链接kaldi 详细安装教程 安装系统依赖&#xff08;如果经常使用linux 服务器&#xff0c;一般都会有&#xff09; apt-get updateapt-get install -y --no-install-recommends g make automake autoconf bzip2 unzip wget sox …...

EtherCAT 转 ModbusTCP 网关

功能概述 本产品是 EtherCAT 和 Modbus TCP 网关&#xff0c;使用数据映射方式工作。 本产品在 EtherCAT 侧作为 EtherCAT 从站&#xff0c;接 TwinCAT 、CodeSYS 、PLC 等&#xff1b;在 ModbusTCP 侧做为 ModbusTCP 主站&#xff08;Client&#xff09;或从站&#xff08;Se…...

iMazing2024Windows和Mac的iOS设备管理软件(可以替代iTunes进行数据备份和管理)

iMazing2024是一款兼容 Windows 和 Mac 的 iOS 设备管理软件&#xff0c;可以替代 iTunes 进行数据备份和管理。以下是一些 iMazing 的主要功能和优点&#xff1a; 数据备份和恢复&#xff1a;iMazing 提供了强大的数据备份和恢复功能&#xff0c;可以备份 iOS 设备上的各种数据…...

carpower

车载android 电源管理 车载音响电源管理器_definitely的技术博客_51CTO博客...

数据结构2月25日

第一道&#xff1a; 第二道&#xff1a; 1、插入到prev和next中间 1.new(struct list_head*)malloc(sizeof(struct list_head*)); if(newNULL) { printf("失败\n"); return; } new->nextprev->next; prev->nextnew; return; 2、删除prve和next…...

改进 RAG:自查询检索

原文地址&#xff1a;Improving RAG: Self Querying Retrieval 2024 年 2 月 11 日 让我们来解决构建 RAG 系统时的一个大问题。 我们不能依赖语义搜索来完成每个检索任务。只有当我们追求单词的含义和意图时&#xff0c;语义搜索才有意义。 But in case&#xff0c;我们正…...

【Git企业实战开发】Git常用开发流操作总结

【Git企业实战开发】Git常用开发流操作总结 大家好 我是寸铁&#x1f44a; 总结了一篇Git常用开发流操作总结的文章✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 现在刚做项目的伙伴&#xff0c;可能你之前学过git&#xff0c;但是一实战发现不熟悉 没关系&#xff0c;看寸铁这篇…...

vue2+element医院安全(不良)事件报告管理系统源代码

目录 安全不良事件类型 源码技术栈 医院安全&#xff08;不良&#xff09;事件报告管理系统采用无责的、自愿的填报不良事件方式&#xff0c;有效地减轻医护人员的思想压力&#xff0c;实现以事件为主要对象&#xff0c;可以自动、及时、实际地反应医院的安全、不良、近失事件…...

leetcode初级算法(python)- 字符串

文章目录 1.反转字符串常规算法pythonic 算法2.整数反转数学法字符串法3.字符串中的第一个唯一字符pythonic算法哈希算法4.有效的字母异位词常规算法进阶算法5.最长公共前缀1.反转字符串 输入:[‘h’,‘e’,‘l’,‘l’,‘o’] 输出:[‘o’,‘l’,‘l’,‘e’,‘h’]...

Python 鼠标模拟

鼠标模拟即&#xff1a;通过python 进行模拟鼠标操作 引入类库 示例如下&#xff1a; import win32api import win32con import time 设置鼠标位置 设置鼠标位置为窗口中的回收站。 示例如下&#xff1a; # 设置鼠标的位置 win32api.SetCursorPos([30, 40]) 双击图标 设置…...

Linux进程 ----- 信号处理

前言 从信号产生到信号保存&#xff0c;中间经历了很多&#xff0c;当操作系统准备对信号进行处理时&#xff0c;还需要判断时机是否 “合适”&#xff0c;在绝大多数情况下&#xff0c;只有在 “合适” 的时机才能处理信号&#xff0c;即调用信号的执行动作。 一、信号的处理…...

【数位】【数论】【分类讨论】2999. 统计强大整数的数目

作者推荐 动态规划的时间复杂度优化 本文涉及知识点 数位 数论 LeetCode2999. 统计强大整数的数目 给你三个整数 start &#xff0c;finish 和 limit 。同时给你一个下标从 0 开始的字符串 s &#xff0c;表示一个 正 整数。 如果一个 正 整数 x 末尾部分是 s &#xff08…...

MongoDB聚合运算符:$atan2

$atan2用来计算反正切&#xff0c;返回指定表达式的反正切值&#xff0c;与$antan的区别主要是参数不同。 语法 { $atan2: [<expression1>, <expression1>] }<expression>为可被解析为数值的表达式$atan2返回弧度&#xff0c;使用$radiansToDegrees运算符可…...

敏捷开发最佳实践:价值维度实践案例之ABTest中台化

22年敏捷白皮书调研发现&#xff0c;仅有14%的企业部分实现价值管理闭环&#xff0c;8%的企业能够做到企业战略和业务目标与价值管理紧密结合。这一现象说明了大部分中国企业还不能在敏捷实践中实现需求价值的体系化及多维度价值度量&#xff0c;因此推广优秀的敏捷实践至关重要…...

爬虫基本库的使用(requests库的详细解析)

注&#xff1a;本文一共4万多字&#xff0c;希望读者能耐心读完&#xff01;&#xff01;&#xff01; 前面,我们了解了urllib库的基本用法&#xff08;爬虫基本库的使用(urllib库的详细解析)-CSDN博客&#xff09;。其中&#xff0c;确实又不方便的地方。例如处理网页验证…...

QT实现串口通信

一.Qt串口通信 Qt提供了两个关于串口通信的C类&#xff0c;分别是QSerialPort和QSerialPortInfo。 QSerialPort类提供了操作串口的各种接口。 QSerialPortInfo是一个辅助类&#xff0c;可以提供计算机中可用的串口的各种信息。 QSerialPortInfo Class用于提供外部串行端口的…...

微信小程序 --- 通用模块封装(showToast,showModal ,本地存储)

目录 01. 为什么进行模块封装 02. 消息提示模块封装 03. 模态对话框封装 04. 封装本地存储 API 05. 拓展:封装异步存储API优化代码 01. 为什么进行模块封装 在进行项目开发的时候&#xff0c;我们经常的会频繁的使用到一些 API&#xff0c; 例如&#xff1a;wx.showToast…...

基于springboot+vue的音乐网站(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…...

pclpy 最小二乘法拟合平面

pclpy 最小二乘法拟合平面 一、算法原理二、代码三、结果1.左边原点云、右边最小二乘法拟合平面后点云投影 四、相关数据 一、算法原理 平面方程的一般表达式为&#xff1a; A x B y C z D 0 ( C ≠ 0 ) Ax By Cz D 0 \quad (C\neq0) AxByCzD0(C0) 即&#xff1a; …...

蓝桥杯备战刷题(自用)

1.被污染的支票 #include <iostream> #include <vector> #include <map> #include <algorithm> using namespace std; int main() {int n;cin>>n;vector<int>L;map<int,int>mp;bool ok0;int num;for(int i1;i<n;i){cin>>nu…...

Python习题详解

练习&#xff1a; 1&#xff0c;计算100以内奇数的和 #计算100以内所有奇数的和 sum 0 # n 1 # while n < 100: # # sum sum n # sum n # # n n 2 # n 2 # print(sum) n 99 #求偶数时n 100 while n > 0:sum n# n n - 2n - 2 print(sum)2&#xff0c;打印直…...

绩效考核利器:Excel报表模板,解锁企业高效员工评价新境界

一、背景与目标 在现今的企业管理中&#xff0c;绩效考核是一项至关重要的任务。它旨在评估员工的工作表现&#xff0c;激励员工积极进取&#xff0c;同时也是制定薪酬、晋升、培训等决策的重要依据。为了满足这一需求&#xff0c;我们设计了一款绩效考核Excel报表模板&#x…...

如何使用Lychee+cpolar搭建本地私人图床并实现远程访问存储图片

文章目录 1.前言2. Lychee网站搭建2.1. Lychee下载和安装2.2 Lychee网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4.公网访问测试5.结语 1.前言 图床作为图片集中存放的服务网站&#xff0c;可以看做是云存储的一部分&#xff0c;既可…...

跨境支付介绍

1、跨境电商定义和分类&#xff1b; 2、国际贸易清结算&#xff1b; 3、跨境支付&#xff1b; 1、跨境电商定义和分类 跨境电商业务简单说就是指不同国家地域的主体通过电子商务进行交易的一种业务模式。同传统的电商不同&#xff0c;交易双方属于不同的国家。因此&#xff0…...

如何在Linux搭建MinIO服务并实现无公网ip远程访问内网管理界面

文章目录 前言1. Docker 部署MinIO2. 本地访问MinIO3. Linux安装Cpolar4. 配置MinIO公网地址5. 远程访问MinIO管理界面6. 固定MinIO公网地址 前言 MinIO是一个开源的对象存储服务器&#xff0c;可以在各种环境中运行&#xff0c;例如本地、Docker容器、Kubernetes集群等。它兼…...

Cortex-M可以跑Linux操作系统吗?

在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「Linux的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01; Cortex-M系列微控制器主要设计…...

日志系统项目(2)项目实现(实用工具类、日志等级类、日志消息类、日志格式化输出类)

前面的文章中我们讲述了日志系统项目的前置知识点&#xff0c;再本文中我们将开始日志项目的细节实现。 日志系统框架设计 本项目实现的是一个多日志器日志系统&#xff0c;主要实现的功能是让程序员能够轻松的将程序运行日志信息落地到指定的位置&#xff0c;且支持同步与异…...

剑指offer面试题19 二叉树的镜像

考察点 树的遍历知识点 题目 分析 我们分析算法题目的思路基本上都是归纳法&#xff0c;即通过举一些普通的例子来推理出算法流程&#xff0c;而画图又是举例子的常用手段&#xff0c;比如针对树或者链表画画图&#xff0c;针对数字类的举一些数字的例子寻找规律&#xff0c…...

SpringCloud Alibaba 2022之Nacos学习

SpringCloud Alibaba 2022使用 SpringCloud Alibaba 2022需要Spring Boot 3.0以上的版本&#xff0c;同时JDK需要是17及以上的版本。具体的可以看官网的说明。 Spring Cloud Alibaba版本说明 环境搭建 这里搭建的是一个聚合项目。项目结构如下&#xff1a; 父项目的pom.xm…...

js之数组遍历

for 可以用来遍历数组、字符串、类数组、DOM节点&#xff0c;可以更改原数组&#xff0c;可以使用break、continue 跳出循环 return 只能在函数内部使用 for(声明循环变量&#xff1b;判断循环条件&#xff1b;更新循环变量){循环体 }forEach 参数&#xff08;当前元素&#x…...

极狐GitLab 16.9 重磅发布,快来 pick 你心仪的功能吧~【五】

GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署极狐GitLab。 沿袭我们的月度发版机制&#xff0c;今天我们正式发布极狐GitL…...

如何在本地部署密码管理软件bitwarden并结合cpolar实现远程同步

文章目录 1. 拉取Bitwarden镜像2. 运行Bitwarden镜像3. 本地访问4. 群晖安装Cpolar5. 配置公网地址6. 公网访问Bitwarden7. 固定公网地址8. 浏览器密码托管设置 Bitwarden是一个密码管理器应用程序&#xff0c;适用于在多个设备和浏览器之间同步密码。自建密码管理软件bitwarde…...

DT DAY3 信号和槽

作业&#xff1a; 1> 思维导图 2> 使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 btn3 new QPushButton("按钮3",this);btn3->resize(ui->btn2->width(),ui->b…...

Spring、SpringBoot、SpringCloud三者的区别

Spring、Spring Boot 和 Spring Cloud 是构建企业级 Java 应用程序的不同层次的框架和工具。下面详细介绍它们之间的区别&#xff1a; 1. Spring框架&#xff1a; 概述&#xff1a; Spring 是一个全功能的企业级 Java 框架&#xff0c;提供了依赖注入、面向切面编程、事务管理…...

leetcode:46.全排列

1.什么是排列&#xff1f; 有顺序&#xff01;&#xff01; 2.树形结构&#xff1a; 使用used数组进行标记取过的元素&#xff0c;一个元素一个元素地进行取值&#xff0c;取完之后将used数组进行标记。 3.代码实现&#xff1a;&#xff08;循环从i0开始&#xff0c;而不是…...

基于STM32的宠物箱温度湿度监控系统

基于STM32的宠物箱温度湿度监控系统 一、引言 随着人们生活水平的提高,养宠物已经成为越来越多人的选择。宠物作为家庭的一员,其生活环境和健康状况受到了广泛关注。温度和湿度是影响宠物舒适度和健康的重要因素之一。因此,开发一款能够实时监控宠物箱温度和湿度的系统具有…...

《高质量的C/C++编程规范》学习

目录 一、编程规范基础知识 1、头文件 2、程序的板式风格 3、命名规则 二、表达式和基本语句 1、运算符的优先级 2、复合表达式 3、if语句 4、循环语句的效率 5、for循环语句 6、switch语句 三、常量 1、#define和const比较 2、常量定义规则 四、函数设计 1、参…...

客户端订阅服务端事件的机制

一、场景描述 产业大脑平台是一个典型的审核系统&#xff0c;用户发布到平台的信息需要经过审核员审核后生效。 用户发布信息->审核员审核信息->用户信息生效&#xff0c;这一流程可能发生在用户的同一次登录周期内。为了使客户端能实时响应信息的状态变化&#xff0c;…...

pulsar入门介绍

概述 Pulsar 是一个多租户、高性能的服务器到服务器消息传递解决方案。Pulsar 最初由 Yahoo 开发&#xff0c;由 Apache 软件基金会管理。 特点 Pulsar 的主要功能如下&#xff1a; 原生支持 Pulsar 实例中的多个集群&#xff0c;可跨集群无缝地复制消息。非常低的发布和端…...

Leetcode 3047. Find the Largest Area of Square Inside Two Rectangles

Leetcode 3047. Find the Largest Area of Square Inside Two Rectangles 1. 解题思路2. 代码实现 题目链接&#xff1a;3047. Find the Largest Area of Square Inside Two Rectangles 1. 解题思路 这道题倒是没啥特别的思路&#xff0c;直接暴力求解就是了&#xff0c;因此…...

ELK 简介安装

1、概念介绍 日志介绍 日志就是程序产生的&#xff0c;遵循一定格式&#xff08;通常包含时间戳&#xff09;的文本数据。 通常日志由服务器生成&#xff0c;输出到不同的文件中&#xff0c;一般会有系统日志、 应用日志、安全日志。这些日志分散地存储在不同的机器上。 日志…...

Linux 的交换空间(swap)是什么?有什么用?

目录 swap是什么&#xff1f;swap有什么用&#xff1f;swap使用典型场景如何查看你的系统是否用到交换空间呢&#xff1f;查看系统中swap in/out的情况 swap是什么&#xff1f; swap就是磁盘上的一块区域。它和Windows系统中的交换文件作用类似&#xff0c;但是它是一段连续的…...

消息中间件篇之RabbitMQ-消息不丢失

一、生产者确认机制 RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。消息发送到MQ以后&#xff0c;会返回一个结果给发送者&#xff0c;表示消息是否处理成功。 当消息没有到交换机就失败了&#xff0c;就会返回publish-confirm。当消息没有到达MQ时&…...

MongoDB中的TTL索引:自动过期数据的深入解析与使用方式

目录 一、TTL索引的深入原理二、TTL索引的使用方式三、TTL索引的限制与考虑因素四、优化TTL索引的策略五、总结 一、TTL索引的深入原理 TTL&#xff08;Time-To-Live&#xff09;索引在MongoDB中是一种特殊的索引&#xff0c;用于自动删除过期的文档。其核心原理在于MongoDB会…...

IPV6地址

技术背景&#xff1a;对IPV4做优化&#xff0c;比如地址长度128&#xff0c;简化了报文头部---快 ipv6地址 十六进制&#xff0c;简写前导0忽略&#xff0c;连续的0写成:: IPv6地址类型 1.单播 2.组播---接口有地址后&#xff0c;自动加入到一个组播里 3.任播---允许地址…...

解密API关键词搜索(淘宝京东1688)商品列表数据

API关键词搜索商品列表数据&#xff1a;赋能电商行业的新动力 随着电子商务的蓬勃发展&#xff0c;API&#xff08;应用程序接口&#xff09;关键词搜索商品列表数据在电商行业中的重要性日益凸显。这一数据资源不仅为消费者提供了便捷的购物体验&#xff0c;还为电商企业带来…...

wpf 简单实验 数据更新 列表更新

1.概要 1.1 需求 一个列表提供添加修改删除的功能&#xff0c;添加和修改的内容都来自一个输入框 1.2 要点 DisplayMemberPath"Zhi"列表.ItemsSource datalist;(列表.SelectedItem ! null)(列表.SelectedItem as A).Zhi 内容.Text;datalist.Remove((列表.Selec…...

【Flink精讲】Flink性能调优:内存调优

内存调优 内存模型 JVM 特定内存 JVM 本身使用的内存&#xff0c;包含 JVM 的 metaspace 和 over-head 1&#xff09; JVM metaspace&#xff1a; JVM 元空间 taskmanager.memory.jvm-metaspace.size&#xff0c;默认 256mb 2&#xff09; JVM over-head 执行开销&#xff1…...