如何做网站代码/在百度上怎么发布广告
背景
事情是这样的,当前业务有一个场景: 从业务库的Mysql
抽取数据到Hive
由于运行环境的网络限制,当前选择的方案:
使用spark
抽取业务库的数据表,然后利用impala jdbc
数据灌输到hive。(没有spark on hive
的条件)
问题
结果就出现问题了:
报错信息如下:
java.sql.SQLFeatureNotSupportedException: [Cloudera][JDBC](10220) Driver does not support this optional feature.at com.cloudera.impala.exceptions.ExceptionConverter.toSQLException(Unknown Source)at com.cloudera.impala.jdbc.common.SPreparedStatement.checkTypeSupported(Unknown Source)at com.cloudera.impala.jdbc.common.SPreparedStatement.setNull(Unknown Source)at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:658)at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:834)at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:834)at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)at org.apache.spark.scheduler.Task.run(Task.scala:121)at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)at java.lang.Thread.run(Thread.java:748)
23/03/04 23:24:51 WARN TaskSetManager: Lost task 0.0 in stage 1.0 (TID 1, localhost, executor driver): java.sql.SQLFeatureNotSupportedException: [Cloudera][JDBC](10220) Driver does not support this optional feature.at com.cloudera.impala.exceptions.ExceptionConverter.toSQLException(Unknown Source)at com.cloudera.impala.jdbc.common.SPreparedStatement.checkTypeSupported(Unknown Source)at com.cloudera.impala.jdbc.common.SPreparedStatement.setNull(Unknown Source)at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:658)at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:834)at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:834)at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)at org.apache.spark.scheduler.Task.run(Task.scala:121)at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)at java.lang.Thread.run(Thread.java:748)
问题溯源
在spark
从mysql
中读出来的数据中,存在字段有string
的类型。
这个类型在使用DataFrame.write.jdbc()
通过impala jdbc
向Hive
中写数据的时候,如果没有创建Impala
的jdbc Dialect
的时候,此时这个String
的类型,会被转换成
源自 org/apache/spark/sql/execution/datasources/jdbc/JdbcUtils.scala
java.sql.Types.ClOB
类型,戳进这个变量。可以看到它代表的值
接着,我们找到impala jdbc
的com.cloudera.impala.jdbc.common.SPreparedStatement#checkTypeSupported
方法,发现这个列表里面没有2005
所以,程序代码会报错。
对应的数字编码:
com.cloudera.impala.dsi.dataengine.utilities.TypeUtilities#sqlTypeToString
public static String sqlTypeToString(short var0) {switch(var0) {case -11:return "SQL_GUID";case -10:return "SQL_WLONGVARCHAR";case -9:return "SQL_WVARCHAR";case -8:return "SQL_WCHAR";case -7:return "SQL_BIT";case -6:return "SQL_TINYINT";case -5:return "SQL_BIGINT";case -4:return "SQL_LONGVARBINARY";case -3:return "SQL_VARBINARY";case -2:return "SQL_BINARY";case -1:return "SQL_LONGVARCHAR";case 0:return "NULL";case 1:return "SQL_CHAR";case 2:return "SQL_NUMERIC";case 3:return "SQL_DECIMAL";case 4:return "SQL_INTEGER";case 5:return "SQL_SMALLINT";case 6:return "SQL_FLOAT";case 7:return "SQL_REAL";case 8:return "SQL_DOUBLE";case 12:return "SQL_VARCHAR";case 16:return "SQL_BOOLEAN";case 91:return "SQL_TYPE_DATE";case 92:return "SQL_TYPE_TIME";case 93:return "SQL_TYPE_TIMESTAMP";case 101:return "SQL_INTERVAL_YEAR";case 102:return "SQL_INTERVAL_MONTH";case 103:return "SQL_INTERVAL_DAY";case 104:return "SQL_INTERVAL_HOUR";case 105:return "SQL_INTERVAL_MINUTE";case 106:return "SQL_INTERVAL_SECOND";case 107:return "SQL_INTERVAL_YEAR_TO_MONTH";case 108:return "SQL_INTERVAL_DAY_TO_HOUR";case 109:return "SQL_INTERVAL_DAY_TO_MINUTE";case 110:return "SQL_INTERVAL_DAY_TO_SECOND";case 111:return "SQL_INTERVAL_HOUR_TO_MINUTE";case 112:return "SQL_INTERVAL_HOUR_TO_SECOND";case 113:return "SQL_INTERVAL_MINUTE_TO_SECOND";case 2003:return "SQL_ARRAY";default:return null;}}
解决
我们在代码中添加一个这样的类:
import org.apache.spark.sql.jdbc.JdbcDialect;
import org.apache.spark.sql.jdbc.JdbcType;
import org.apache.spark.sql.types.DataType;
import org.apache.spark.sql.types.MetadataBuilder;
import org.apache.spark.sql.types.StringType;
import scala.Option;import java.sql.Types;/*** @author wmh* @date 2021/1/12* impala的sql的方言,为了使impala sql能在spark中正确的执行*/
public class ImpalaDialect extends JdbcDialect {@Overridepublic boolean canHandle(String url) {return url.startsWith("jdbc:impala") || url.contains("impala");}@Overridepublic String quoteIdentifier(String colName) {return "`" + colName + "`";}@Overridepublic Option<DataType> getCatalystType(int sqlType, String typeName, int size, MetadataBuilder md) {return super.getCatalystType(sqlType, typeName, size, md);}@Overridepublic Option<JdbcType> getJDBCType(DataType dt) {if (dt instanceof StringType) {return Option.apply(new JdbcType("String", Types.VARCHAR));}return super.getJDBCType(dt);}
}
会出现这个问题:
at com.cloudera.impala.hivecommon.api.HS2Client.executeStatementInternal(Unknown Source)at com.cloudera.impala.hivecommon.api.HS2Client.executeStatement(Unknown Source)at com.cloudera.impala.hivecommon.dataengine.HiveJDBCNativeQueryExecutor.executeHelper(Unknown Source)at com.cloudera.impala.hivecommon.dataengine.HiveJDBCNativeQueryExecutor.execute(Unknown Source)at com.cloudera.impala.jdbc.common.SPreparedStatement.executePreparedAnyBatch(Unknown Source)at com.cloudera.impala.jdbc.common.SPreparedStatement.executeBatch(Unknown Source)at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:667)at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:834)at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:834)at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)at org.apache.spark.scheduler.Task.run(Task.scala:121)at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
Caused by: com.cloudera.impala.support.exceptions.GeneralException: [Cloudera][ImpalaJDBCDriver](500051) ERROR processing query/statement. Error Code: 0, SQL state: TStatus(statusCode:ERROR_STATUS, sqlState:HY000, errorMessage:AnalysisException: Char size must be > 0: 0
上述问题解释一下:
注意最后一句:errorMessage:AnalysisException: Char size must be > 0: 0
是因为在DataFrame
里面存在’'没有长度的空字符串,这样的空字符串会导致如上报错
因为在spark
构建insert into xx table values(cast('' as char(0))
,因为这个char(0)
的数字不能等于0,所以会出现如上错误。所以字符串中不能为
‘’,
源代码路径:impalajdbc41/2.6.4/impalajdbc41-2.6.4.jar!/com/cloudera/impala/impala/querytranslation/ImpalaInsertQueryGenerator.class
那么针对这个问题,我们要在impala的jdbc的参数上面加上一个UseNativeQuery=1
, 即可解决该问题。
这个UseNativeQuery=1
参数含义是:
上图来自impala jdbc的官方文档
我这里来翻译一下:
此属性指定驱动程序是否转换应用程序发出的查询。
1:驱动程序不会转换应用程序发出的查询,直接使用sql查询。
0:驱动程序将应用程序发出的查询转换为Impala SQL中的等效形式。
也就是说,如果查询sql本来就是impala查询sql,那么就不用进行转换了。
总结
如果有什么更好的方法,请在下方评论区留言,谢谢大哥们了!
相关文章:

【Spark】Spark的DataFrame向Impala写入数据异常及源码解析
背景 事情是这样的,当前业务有一个场景: 从业务库的Mysql抽取数据到Hive 由于运行环境的网络限制,当前选择的方案: 使用spark抽取业务库的数据表,然后利用impala jdbc数据灌输到hive。(没有spark on hive 的条件&…...

学习笔记-架构的演进之限流-3月day03
文章目录前言限流的目标流量统计指标限流设计模式流量计数器模式滑动时间窗模式漏桶模式令牌桶模式分布式限流总结附前言 任何一个系统的运算、存储、网络资源都不是无限的,当系统资源不足以支撑外部超过预期的突发流量时,就应该要有取舍,建…...

动态规划 背包问题
动态规划 背包问题 问题描述: 有一个背包,总容量为12。有6件物品,每件物品的重量和价值不同,求在背包总容量12的前提下,装进物品的最大价值以及装进物品的编号 单个物品重量和价值: 为方便进行思考&#…...

C++ Primer Plus 学习笔记(四)—— 内存模型和名称空间
1 单独编译 C允许将组件函数放在独立的文件即头文件中,头文件中可以包含以下内容: 函数原型;使用#define或const定义的符号常量;结构声明;类声明;模板声明;内联函数。 注意,在包含…...

详解基于 Celestia、Eclipse 构建的首个Layer3 链 Nautilus Chain
以流支付为主要概念的Zebec生态,正在推动流支付这种新兴的支付方式向更远的方向发展,该生态最初以Zebec Protocol的形态发展,并从初期的Solana进一步拓展至BNB Chian以及Near上。与此同时,Zebec生态也在积极的寻求从协议形态向公链…...

列表与数组的转化
目录用np.array(a)将列表转换为数组列表转数组的特殊情况(一)列表转数组的特殊情况(二)针对子元素个数不一致的解决办法用a.tolist()函数将数组转化为列表在python的学习中,经常会用到数组与列表的相互转化,本文主要介绍下关于数组与列表转化的问题。用n…...

docker 运行花生壳实现内外网穿透
环境:centos 7 ,64位 1、创建一个指定的文件夹作为安装示例所用,该示例文件夹为“hsk-nwct”。“hsk-nwct”内创建“app”文件夹作为docker容器挂载出来的文件。 2、在“app”内下载花生壳linux安装包,下载花生壳应用:花生壳客户…...

操作系统——16.时间片轮转、优先级、多级反馈队列算法
这篇文章我们来看一下进程调度算法中的时间片轮转、优先级、多级反馈队列算法 目录 1.概述 2.时间片轮转调度算法(RR,Round-Robin) 3.优先级调度算法 4.多级反馈队列调度算法 5.分析对比 1.概述 首先,我们来看一下这篇文章…...

Python3.8.8-Django3.2-Redis-连接池-数据类型-字符串-list-hashmap-命令行操作
文章目录1.认识Redis1.1.优点1.2.缺点2.在Django中Redis的连接3.Redis的基础用法3.1.hashmap结构3.2.list结构4.命令行查看数据库5.作者答疑1.认识Redis Remote DIctionary Server(Redis) 是一个key-value 存储系统,是跨平台的非关系型数据库。是一个开源的使用 AN…...

Android kotlin 系列讲解(进阶篇)高级项目架构模式 - MVVM
<<返回总目录 1、MVVM是什么 MVVM是Model-View-ViewModel的缩写,是一种高级项目架构模式。 MVVM架构可以将程序结构主要分成三个部分: Model:数据模型部分,包括从服务端获取的json数据或者从本地获取的数据等等View&…...

8. 查找
1 题目描述 查找成绩10开启时间2021年09月24日 星期五 18:00折扣0.8折扣时间2021年11月15日 星期一 00:00允许迟交否关闭时间2021年11月23日 星期二 00:00 输入 n(n ≤ 10^6)个不超过 10^9的单调不减的(就是后面的数字不小于前面的数字)非负整数 &#…...

二分查找算法
感谢“五点七边”工作室的算法讲解,详细内容可以参考视频讲解 二分查找为什么总是写错?_哔哩哔哩_bilibili 此处仅是个人学习总结 以target等于5为例,输入: 1 2 3 5 5 5 8 9 1. 找到第一个 > target 的元素 判断条件 < target&am…...

Git(3)之远程服务器
Git基础之远程服务器 Author:onceday date:2023年3月5日 满满长路有人对你微笑过嘛… windows安装可参考文章:git简易配置_onceday_CSDN博客 參考文档: 《progit2.pdf》,Progit2 Github。《git-book.pdf》 文章目…...

Javalin解构
Javalin Javalin是一个轻量级http框架,我们可以很容易的了解请求的处理过程及其设计,具有较高的学习意义。 从demo说起 public static void main(String[] args) {Javalin app Javalin.create(config -> {System.out.println("用户配置"…...

yolov5算法,训练模型,模型检测
嘟嘟嘟嘟!工作需要,所以学习了下yolov5算法。是干什么的呢? 通俗来说,可以将它看做是一个小孩儿,通过成年人(开发人员)提供的大量图片的学习,让自己知道我看到的哪些场景需要提醒给成…...

linux系统防火墙开放端口
linux系统防火墙开放端口 在外部访问CentOS中部署应用时,需要通过防火墙管理软件,开端口,或者直接关闭防火墙进行解决(不建议) 加粗样式 常用命令: systemctl start firewalld #启动 systemctl stop firewalld #停止 systemctl status firewalld #查看…...

CSAPP第九章 虚拟内存
理解虚拟内存的原因 本章前部分描述虚拟内存是如何工作的,后一部分描述应用程序如何使用和管理虚拟内存 物理和虚拟寻址 虚拟内存作为缓存的工具 页表 页命中 缺页 虚拟内存作为内存管理的工具 简化链接,简化加载,简化共享,简化…...

numpy数组与矩阵运算(二)
文章目录矩阵生成与常用操作矩阵生成矩阵转置查看矩阵特性矩阵乘法计算相关系数矩阵计算方差、协方差、标准差计算特征值与特征向量计算逆矩阵求解线性方程组奇异值分解函数向量化矩阵生成与常用操作 矩阵生成 扩展库numpy中提供的matrix()函数可以用来把列表、元组、range对…...

Dubbo 中 Zookeeper 注册中心原理分析
Dubbo 中 Zookeeper 注册中心原理分析 文章目录Dubbo 中 Zookeeper 注册中心原理分析一、ZooKeeper注册中心1.1 ZooKeeper数据结构1.2 ZooKeeper的Watcher机制1.3 ZooKeeper会话机制1.4 使用ZooKeeper作为注册中心二、源码分析2.1 AbstractRegistry2.2 FailbackRegistry2.2.1 核…...

素数产生新的算法(由筛法减法改为增加法)--哥德巴赫猜想的第一次实际应用
素数产生新的算法(由筛法减法改为增加法)--哥德巴赫猜想的第一次实际应用 摘要:长期以来,人们认为哥德巴赫猜想没有什么实际应用的。 现在,我假设这个不是猜想,而是定理或公理,就产生了新的应用…...

递归-需要满足三个条件
一,概述 递归是一种应用非常广泛的算法(或者编程技巧)。很多数据结构和算法的编码实现都要用到递归,比如 DFS 深度优先搜索、前中后序二叉树遍历等。 去的过程叫“递”,回来的过程叫“归”。基本上所有的递归问题都可…...

【剑指Offer-Java】两个栈实现队列
题目 用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead 操作返回 -1 ) 输入: [“CQueue”,“appendT…...

Allegro如何将Waived掉的DRC显示或隐藏操作指导
Allegro如何将Waived掉的DRC显示或隐藏操作指导 在用Allegro做PCB设计的时候,如果遇到正常的DRC,可以用Waive的命令将DRC不显示,如下图 当DRC被Waive掉的时候,如何将DRC再次显示出来。类似下图效果 具体操作如下 点击Display...

MATLAB——数据及其运算
MATLAB数值数据数值数据类型的分类1.整型整型数据是不带小数的数,有带符号整数和无符号整数之分。表中列出了各种整型数据的取值范围和对应的转换函数。2.浮点型浮点型数据有单精度(single)和双精度((double)之分&…...

【微信小程序】-- 页面导航 -- 声明式导航(二十二)
💌 所属专栏:【微信小程序开发教程】 😀 作 者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...

gdb查看汇编代码的例子
gdb查看汇编代码的例子 操作步骤 用 gdb 启动可执行文件:gdb executable_file在 gdb 中设置断点:break function_name 或者 break *memory_address运行程序:run当程序停止在断点处时,使用 disassemble 命令来查看汇编代码&#…...

第四讲:如何将本地代码与服务器代码保持实时同步
一、前言 在我们进行 Ambari 二次开发时,通常会先在服务器上部署一套可以使用的 Ambari 环境。 二次开发,就肯定是要改动代码的,我们不能老是在服务器上用vim编辑文件,那样效率太低,始终不是长久之计。 所以我们需要在本地打开我们的Ambari源码项目,比如用idea工具,可…...

cuda调试(一)vs2019-windows-Nsight system--nvtx使用,添加nvToolsExt.h文件
cuda调试 由于在编程过程中发现不同的网格块的结构,对最后的代码结果有影响,所以想记录一下解决办法。 CUDA的Context、Stream、Warp、SM、SP、Kernel、Block、Grid cuda context (上下文) context类似于CPU进程上下,表示由管理层 Drive …...

向Spring容器中注入bean有哪几种方式?
文章前言: 写这篇文章的时候,我正在手机上看腾讯课堂的公开课,有讲到 Spring IOC 创建bean有哪几种方式,视频中有提到过 set注入、构造器注入、注解方式注入等等;于是,就想到了写一篇《Spring注入bean有几种…...

如何用 Python采集 <豆某yin片>并作词云图分析 ?
嗨害大家好鸭!我是小熊猫~ 总有那么一句银幕台词能打动人心 总有那么一幕名导名作念念不忘 不知道大家有多久没有放松一下了呢? 本次就来给大家采集一下某瓣电影并做词云分析 康康哪一部才是大家心中的经典呢? 最近又有哪一部可能会成为…...