from_pretrained 做了啥
transformers的三个核心抽象类是Config, Tokenizer和Model,这些类根据模型种类的不同,派生出一系列的子类。构造这些派生类的对象也很简单,transformers为这三个类都提供了自动类型,即AutoConfig, AutoTokenizer和AutoModel。三个AutoClass都提供了from_pretrained方法,这个方法则一气完成了模型类别推理、模型文件列表映射、模型文件下载及缓存、类对象构建等一系列操作。
from_pretrained这个类方法,最重要的一个参数叫做pretrained_model_name_or_path。顾名思义,我们可以给出一个模型的短名,也可以给出一个路径。如果给的是模型短名,则它会想办法映射出要下载的文件的URL位置,并将文件下载到本地一个固定的cache目录。第二次再调用的时候,它会检查cache中是否已经存在同样的文件,如果有则直接从cache载入,不再走网络下载。如果给的是路径名,那么它假设该路径之下已经存在自行训练/预下载/经过微调的模型文件,直接载入。
from_pretrained方法实际上提供了丰富的下载辅助功能,
- cache_dir:自定义的cache路径
- force_download:强制重新下载
- resume_download:断点续传
- proxies:字典形式指定代理
- ……
AutoConfig.from_pretrained
Config的初次构造相对简单,主要是通过hf_bucket_url函数将函数短名映射成为网络URL,形如'https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json'的一个json文件。下载它到cache目录,再读取构造对象即可。
AutoTokenizer.from_pretrained
Tokenizer初次构造要复杂一点。
- 首先它需要先构造Config对象,然后查一张预定义好的表TOKENIZER_MAPPING。这张映射表中,描述了什么样的Config Class对应什么样的Tokenizer Class。
- 每个Tokenizer Class都定义了一个类变量vocab_files_names,指定了它所用到的词汇文件名有哪些。
- 另外Tokenizer Class可能还会产生若干附加文件,可能有也可能没有,但这些附加文件名列表是有限的,存在additional_files当中,包括ADDED_TOKENS_FILE, SPECIAL_TOKENS_MAP_FILE, TOKENIZER_CONFIG_FILE, FULL_TOKENIZER_FILE等,后续下载时需要逐一探测一下。
- 以上所有的文件名,都需要用hf_bucket_url函数转成相应的URL。
AutoModel.from_pretrained
Model的构造也相对简单。
- 和Tokenizer类似,它也需要先得到Config对象,然后查MODEL_MAPPING映射表,得到实际的Model Class。
- Model Class定义了类方法from_pretrained。这个方法会根据模型短名以及该模型是从TF还是PT训练的,利用hf_bucket_url函数转成相应的URL。TF2对应的模型文件名为tf_model.h5,PT对应的模型文件名为pytorch_model.bin。由于模型文件一般比较大,转换时采用了CDN域名,下载时采用了分块下载stream的方式。
以 vicuna-7b-v1.5为例
https://huggingface.co/lmsys/vicuna-7b-v1.5/tree/main

其中 config.json

是模型model的 Configuration ,文档https://huggingface.co/transformers/v3.3.1/main_classes/configuration.html
其他
a config.json file, which saves the configuration of your model ;
a pytorch_model.bin file, which is the PyTorch checkpoint (unless you can’t have it for some reason) ;
a tf_model.h5 file, which is the TensorFlow checkpoint (unless you can’t have it for some reason) ;
a special_tokens_map.json, which is part of your tokenizer save;
a tokenizer_config.json, which is part of your tokenizer save;
files named vocab.json, vocab.txt, merges.txt, or similar, which contain the vocabulary of your tokenizer, part of your tokenizer save;
maybe a added_tokens.json, which is part of your tokenizer save.
https://huggingface.co/transformers/v3.3.1/model_sharing.html
参考
【HugBert05】照猫画虎:理解from_pretrained,攒个模型下载器 - 知乎
相关文章:
from_pretrained 做了啥
transformers的三个核心抽象类是Config, Tokenizer和Model,这些类根据模型种类的不同,派生出一系列的子类。构造这些派生类的对象也很简单,transformers为这三个类都提供了自动类型,即AutoConfig, AutoTokenizer和AutoModel。三个…...
2024/03/27(C++·day3)
一、思维导图 二、完成下面类 代码 #include <cstring> #include <iostream>using namespace std;class myString { private:char *str; // 记录C风格的字符串int size; // 记录字符串的实际长度public:// 无参构造函数myString() : size(10){str new char[si…...
Multimodal Chain-of-Thought Reasoning in Language Models阅读笔记
论文(2023年)链接:https://arxiv.org/pdf/2302.00923.pdf GitHub项目链接:GitHub - amazon-science/mm-cot: Official implementation for "Multimodal Chain-of-Thought Reasoning in Language Models" (stay tuned a…...
C语言例4-15:从键盘输入一个整数,求其绝对值并输出。
代码如下: //从键盘输入一个整数,求其绝对值并输出。 #include<stdio.h> int main(void) {int n;printf("输出一个整数: \n");scanf("%d",&n); //从键盘输入一个整数保存至变量nif(n<0) //…...
【Linux】调试器-gdb的使用说明(调试器的配置,指令说明,调试过程说明)
目录 00.背景 01.安装 02.生成调试信息 03.调试过程 00.背景 在软件开发中,通常会为程序构建两种不同的版本:Debug模式和Release模式。它们之间的区别主要在于优化级别、调试信息、错误检查等方面: 1.Debug 模式: 优化级别低…...
Oracle AI Vector Search Multi-Vector Similarity Search 即多向量相似度检索学习笔记
Oracle AI Vector Search Multi-Vector Similarity Search 即多向量相似度检索学习笔记 0. 什么是多向量相似度检索1. 多向量相似度检索的示例 SQL2. 执行多向量相似度检索3. 分区行限制子句的完整语法 0. 什么是多向量相似度检索 多向量相似度检索涉及通过使用称为分区的分组…...
白板手推公式性质 AR模型 时间序列分析
白板手推公式性质 AR模型 时间序列分析 视频讲解:https://www.bilibili.com/video/BV1D1421S76v/?spm_id_from.dynamic.content.click&vd_source6e452cd7908a2d9b382932f345476fd1 B站对应视频讲解(白板手推公式性质 AR模型 时间序列分析)...
零基础学python之高级编程(6)---Python中进程的Queue 和进程锁,以及进程池的创建 (包含详细注释代码)
Python中进程的Queue 和进程锁,以及进程池的创建 文章目录 Python中进程的Queue 和进程锁,以及进程池的创建前言一、进程间同步通信(Queue)二、进程锁(Lock)三、创建进程池Poorpool 类方法: End! 前言 大家好,上一篇文章,我们初步接触了进程的概念及其应…...
184. 部门工资最高的员工
文章目录 题意思路代码 题意 题目链接 查出每个部门最高工资 思路 子查询group by 代码 select b.name as Department,a.name as Employee,salary from Employee as a left joinDepartment as b ona.departmentId b.id where(a.departmentId, salary) in(select departme…...
插值表达式、Vue指令、指令补充
vue上手步骤 <body><!-- vue2语法 --><!-- 1.准备容器:一会vue就会把数据展示到这里 --><div id"app"><!-- 4.使用{{ }}即可显示数据 ,{{}}就是插值表达式--><p>姓名:{{uname}}</p><…...
qiankun实现基座、子应用样式隔离
目录 qiankun 实现主应用与子应用样式隔离使用CSS-in-JS来实现样式隔离react-jssstyled-components qiankun 实现主应用与子应用样式隔离 qiankun 之中默认的样式隔离是针对子应用与子应用之间的。至于主应用的样式会影响到子应用,若需要,则需要配置进行…...
C语言从入门到实战----数据在内存中的存储
1. 整数在内存中的存储 在讲解操作符的时候,我们就讲过了下⾯的内容: 整数的2进制表⽰⽅法有三种,即 原码、反码和补码 有符号的整数,三种表⽰⽅法均有符号位和数值位两部分,符号位都是⽤0表⽰“正”,⽤…...
接口关联和requests库
一、接口关联 postman的接口 postman的接口关联配置:js代码,重点在于思路。 // 定义jsonData这个变量 接受登录接口的返回结果 var jsonData JSON.parse(responseBody); // 从返回结果里提取token/id值,并赋值给token/id变量值作为环境变…...
Python编程基础 001 开篇:为什么要学习编程
Python编程基础 001 开篇:为什么要学习编程 一、什么是程序,什么是编程二、学习编程对青少年的价值(一)未来社会的需要(二)学习对现青少年现的现阶段的直接影响 三、学习编程从什么时候开始(一)…...
AQS源码分析
前言 AbstractQueuedSynchronizer是抽象同步队列,其是实现同步机器的基础组件,并发包中的锁的底层就是使用AQS实现的。AQS中 维护了一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞…...
应对Locked勒索病毒威胁:你的数据安全准备好了吗?
导言: .Locked勒索病毒,作为一种新型的恶意软件,已经在全球范围内引起了广泛的关注。这种病毒通过加密受害者的文件,并要求支付赎金以获取解密密钥,从而实现对受害者的勒索。本文旨在深入解析.Locked勒索病毒的特点、…...
周末分享一篇关于html和http的文章吧
前面咱们说了https://blog.csdn.net/luohaitao/article/details/136974344(说道说道JSP和HTTP吧-CSDN博客),把http的方法和jsp中httpservle对象的方法对上号了,其实从开发的角度看,jsp就是html中混入了java的服务端代码…...
Frechet分布
Frechet分布是一种连续概率分布,它是极值统计中的一个重要模型,尤其在分析极端事件(如洪水、地震、金融市场中的极端波动)的最大值极限分布时扮演关键角色。Frechet分布属于极值分布的三种基本类型(I型、II型、III型&a…...
vue3全局引入element-plus使用Message教程
文章目录 安装引入 Element Plus和组件样式示例注意安装与引入:按需引入:API 使用:样式问题:组件上下文:版本兼容性:错误处理: 这是 Element UI 的 Vue 3 版本。ElMessage 是 Element Plus 中的…...
时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测
时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现BiTCN…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
