实现阻塞队列
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
public class Main {
public static void main(String[] args) throws InterruptedException {
BlockingQueue<String> queue = new LinkedBlockingQueue<>();
queue.put("111");
queue.put("222");
queue.put("333");
queue.put("444");
String elem = queue.take();
System.out.println(elem);
elem = queue.take();
System.out.println(elem);
elem = queue.take();
System.out.println(elem);
elem = queue.take();
System.out.println(elem);
elem = queue.take();
System.out.println(elem);
}
}
// 直接让这个队列里面存储字符串.
class MyBlockingQueue {
// 此处这里的最大长度, 也可以指定构造方法, 由构造方法的参数来制定.
private String[] data = new String[1000];
// 队列的起始位置.
private volatile int head = 0;
// 队列的结束位置的下一个位置.
private volatile int tail = 0;
// 队列中有效元素的个数.
private volatile int size = 0;
// private final Object locker = new Object();
// 提供核心方法, 入队列和出队列.
public void put(String elem) throws InterruptedException {
synchronized (this) {
while (size == data.length) {
// 队列满了.
// 如果是队列满, 继续插入元素, 就会阻塞.
this.wait();
}
// 队列没满, 真正的往里面添加元素
data[tail] = elem;
tail++;
// 如果 tail 自增之后, 到达了数组末尾. 这个时候就需要让它回到开头 (环形队列)
if (tail == data.length) {
tail = 0;
}
size++;
// 这个 notify 用来唤醒 take 中的 wait
this.notify();
}
}
public String take() throws InterruptedException {
synchronized (this) {
while (size == 0) {
// 队列空了.
this.wait();
}
// 队列不空, 就可以把队首元素 (head 位置的元素) 删除掉, 并进行返回.
String ret = data[head];
head++;
if (head == data.length) {
head = 0;
}
size--;
// 这个 notify 用来唤醒 put 中的 wait
this.notify();
return ret;
}
}
}
public class Main {
public static void main(String[] args) {
// 生产者, 消费者, 分别使用一个线程表示. (也可以使用多个线程)
MyBlockingQueue queue = new MyBlockingQueue();
// 消费者
Thread t1 = new Thread(() -> {
while (true) {
try {
String result = queue.take();
System.out.println("消费元素: " + result);
// 暂时先不 sleep
Thread.sleep(500);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
});
// 生产者
Thread t2 = new Thread(() -> {
int num = 1;
while (true) {
try {
queue.put(num + "");
System.out.println("生产元素: " + num);
num++;
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
});
t1.start();
t2.start();
}
}
import java.util.Timer;
import java.util.TimerTask;
// 定时器
public class Main{
public static void main(String[] args) {
Timer timer = new Timer();
// 给定时器安排了一个任务, 预定在 xxx 时间去执行.
timer.schedule(new TimerTask() {
@Override
public void run() {
System.out.println("3000");
}
}, 3000);
timer.schedule(new TimerTask() {
@Override
public void run() {
System.out.println("2000");
}
}, 2000);
timer.schedule(new TimerTask() {
@Override
public void run() {
System.out.println("1000");
}
}, 1000);
System.out.println("程序启动!");
}
}
import java.util.PriorityQueue;
// 通过这个类, 描述了一个任务
class MyTimerTask implements Comparable<MyTimerTask> {
// 要有一个要执行的任务
private Runnable runnable;
// 还要有一个执行任务的时间
private long time;
// 此处的 delay 就是 schedule 方法传入的 "相对时间"
public MyTimerTask(Runnable runnable, long delay) {
this.runnable = runnable;
this.time = System.currentTimeMillis() + delay;
}
@Override
public int compareTo(MyTimerTask o) {
// 这样的写法, 就是让队首元素是最小时间的值
// 到底是谁 - 谁, 不要背!! 你可以试试!!
return (int) (this.time - o.time);
// 如果是想让队首元素是最大时间的值
// return o.time - this.time;
}
public long getTime() {
return time;
}
public Runnable getRunnable() {
return runnable;
}
}
// 自己搞的定时器
class MyTimer {
// 使用一个数据结构, 保存所有要安排的任务.
private PriorityQueue<MyTimerTask> queue = new PriorityQueue<>();
// 使用这个对象作为锁对象.
private Object locker = new Object();
public void schedule(Runnable runnable, long delay) {
synchronized (locker) {
queue.offer(new MyTimerTask(runnable, delay));
locker.notify();
}
}
// 搞个扫描线程.
public MyTimer() {
// 创建一个扫描线程
Thread t = new Thread(() -> {
// 扫描线程, 需要不停的扫描队首元素, 看是否是到达时间.
while (true) {
try {
synchronized (locker) {
// 不要使用 if 作为 wait 的判定条件, 应该使用 while
// 使用 while 的目的是为了在 wait 被唤醒的时候, 再次确认一下条件.
while (queue.isEmpty()) {
// 使用 wait 进行等待.
// 这里的 wait, 需要由另外的线程唤醒.
// 添加了新的任务, 就应该唤醒.
locker.wait();
}
MyTimerTask task = queue.peek();
// 比较一下看当前的队首元素是否可以执行了.
long curTime = System.currentTimeMillis();
if (curTime >= task.getTime()) {
// 当前时间已经达到了任务时间, 就可以执行任务了
task.getRunnable().run();
// 任务执行完了, 就可以从队列中删除了.
queue.poll();
} else {
// 当前时间还没到任务时间, 暂时不执行任务.
// 暂时先啥都不干, 等待下一轮的循环判定了.
locker.wait(task.getTime() - curTime);
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
t.start();
}
}
public class Main {
public static void main(String[] args) {
MyTimer timer = new MyTimer();
timer.schedule(new Runnable() {
@Override
public void run() {
System.out.println("3000");
}
}, 3000);
timer.schedule(new Runnable() {
@Override
public void run() {
System.out.println("2000");
}
}, 2000);
timer.schedule(new Runnable() {
@Override
public void run() {
System.out.println("1000");
}
}, 1000);
System.out.println("程序开始执行");
}
}
相关文章:
实现阻塞队列
import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.BlockingQueue; import java.util.concurrent.LinkedBlockingQueue; public class Main { public static void main(String[] args) throws InterruptedException { BlockingQue…...
MySQL8.X驱动datetime映射问题
MySQL8.X驱动datetime映射问题 背景:项目由SSM项目迁移至SpringBoot,对mysql数据库驱动进行了升级导致出现问题。 原因:mysql驱动的8.X版本对数据库类型datetime映射为LocalDateTime。 解决:暂时不升级mysql驱动,mys…...
【Selenium】隐藏元素的定位和操作|隐藏与isDisplay方法
一、selenium 中隐藏元素如何定位? 如果单纯的定位的话,隐藏元素和普通不隐藏元素定位没啥区别,用正常定位方法就行了 但是吧~~~能定位到并不意味着能操作元素(如click,clear,send_keys) 二、隐藏元素 如下图有个输入框…...
视图的作用
目录 视图的作用 创建视图 为 scott 分配创建视图的权限 查询视图 复杂视图的创建 视图更新的限制问题 更新视图中数据的部门编号(视图的存在条件) 限制通过视图修改数据表内容 创建只读的视图 复杂视图创建 oracle从入门到总裁:h…...
动态ip白名单频繁更改问题解决方案
1. 使用静态IP地址:可以通过向ISP申请静态IP地址来解决动态IP地址的变化问题,但是这种方法会比较贵。 2. 使用动态DNS:可以使用动态DNS服务,它可以将动态IP地址映射到一个固定的域名,从而使得动态IP地址处理为域名一直…...
什么是物联网监控平台?部署物联网平台有什么作用?
随着物联网技术的飞速发展,越来越多的企业开始关注并投入到这一领域。物联网监控平台作为连接物理世界与数字世界的桥梁,正逐渐成为企业数字化转型的关键组件。今天,我们将深入探讨物联网监控平台的定义、部署物联网平台的作用,以…...
netty构建udp服务器以及发送报文到客户端客户端详细案例
目录 一、基于netty创建udp服务端以及对应通道设置关键 二、发送数据 三、netty中的ChannelOption常用参数说明 1、ChannelOption.SO_BACKLOG 2、ChannelOption.SO_REUSEADDR 3、ChannelOption.SO_KEEPALIVE 4、ChannelOption.SO_SNDBUF和ChannelOption.SO_RCVBUF 5、Ch…...
Selenium 学习(0.22)——软件测试之小结
Junit 等一系列自动化工具不用啰嗦了,自己就是小白再搞科普就装了。 把后面相关内容看了一下,使用这些测试工具一样编写代码(驱动模块【调用接口的代码片段】,桩模块【响应输出结果的代码片段,也就是被测模块调用的模块…...
贪心算法问题
分发饼干-455 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j ,都有…...
深入理解 @Transactional 注解在 Spring 中的应用
前言:在 Java 开发中,事务管理是非常重要的一环。Spring 框架提供了Transactional注解来简化事务管理的操作,本文将深入介绍Transactional注解的用法,并结合代码示例进行详细讨论。 1.Transactional 注解简介 Transactional注解是…...
Python爬虫之爬取网页图片
当我们想要下载网页的图片时,发现网页的图片太多了,无从下手,那我们写一个脚本来爬取呗。 这次的脚本是专门针对某个外国网站使用的,因此仅供参考思路。 在测试的过程中,我发现网站使用了发爬虫机制,具体就…...
AI Agent(LLM Agent)入门解读
1. 什么是AI Agent? AI Agent可以理解为一个智能体,包括感知模块、规划决策模块和行动模块,类似于人类的五官、大脑和肢体。它能帮助人类处理复杂的任务,并能根据环境反馈进行学习和调整。 五官可以理解为感知模块,大…...
自动化面试常见算法题!
1、实现一个数字的反转,比如输入12345,输出54321 num 12345 num_str str(num) reversed_num_str num_str[::-1] reversed_num int(reversed_num_str) print(reversed_num) # 输出 54321代码解析:首先将输入的数字转换为字符串ÿ…...
CCF-CSP真题202206-2《寻宝!大冒险!》
题目背景 暑假要到了。可惜由于种种原因,小 P 原本的出游计划取消。失望的小 P 只能留在西西艾弗岛上度过一个略显单调的假期……直到…… 某天,小 P 获得了一张神秘的藏宝图。 问题描述 西西艾弗岛上种有 n 棵树,这些树的具体位置记录在…...
Rust编程(三)生命周期与异常处理
生命周期 生命周期,简而言之就是引用的有效作用域。在大多数时候,我们无需手动的声明生命周期,因为编译器可以自动进行推导。生命周期的主要作用是避免悬垂引用,它会导致程序引用了本不该引用的数据: {let r;{let x …...
【办公类-21-11】 20240327三级育婴师 多个二级文件夹的docx合并成docx有页码,转PDF
背景展示:有页码的操作题 背景需求: 实操课终于全部结束了,把考试内容(docx)都写好了 【办公类-21-10】三级育婴师 视频转文字docx(等线小五单倍行距),批量改成“宋体小四、1.5倍行…...
OSG编程指南<二十一>:OSG视图与相机视点更新设置及OSG宽屏变形
1、概述 什么是视图?在《OpenGL 编程指南》中有下面的比喻,从笔者开始学习图形学就影响深刻,相信对读者学习场景管理也会非常有帮助。 产生目标场景视图的变换过程类似于用相机进行拍照,主要有如下的步骤: (1)把照相机固定在三脚架上,让它对准场景(视图变换)。 (2)…...
Laplace变换-3
回忆#常见函数的Laplace变换: t z − 1 ↦ Γ ( z ) s z t^{z-1} \mapsto \frac{\Gamma(z)}{s^{z}} tz−1↦szΓ(z) (要求 R e ( z ) > 0 \mathrm{Re}(z)>0 Re(z)>0) e a t ↦ 1 s − a e^{at} \mapsto \frac{1}{s-a} eat↦s−a1…...
LVS负载均衡-DR模式配置
LVS:Linux virtual server ,即Linux虚拟服务器 LVS自身是一个负载均衡器(Director),不直接处理请求,而是将请求转发至位于它后端的真实服务器real server上。 LVS是四层(传输层 tcp/udp)负载均衡…...
【unity】如何汉化unity Hub
相信大家下载安装unity后看着满操作栏的英文,英文不好的小伙伴们会一头雾水。但是没关系你要记住你要怎么高速运转的机器进入中国,请记住我给出的原理,不懂不代表不会用啊。现在我们就来把编译器给进行汉化。 第一步:我们打开Uni…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
