当前位置: 首页 > news >正文

【iOS ARKit】播放3D音频

3D音频

       在前面系列中,我们了解如何定位追踪用户(实际是定位用户的移动设备)的位置与方向,然后通过摄像机的投影矩阵将虚拟物体投影到用户移动设备屏幕。如果用户移动了,则通过VIO 和 IMU更新用户的位置与方向信息,更新投影矩阵,这样就可以把虚拟物体固定在空间的某点上(这个点就是锚点),从而达到以假乱真的视觉体验。

      3D音效处理的目的是让用户进一步相信AR 应用虚拟生成的数字世界是真实的,营造沉浸的AR体验。事实上,3D音效在电影、电视、电子游戏中被广泛应用,但在AR 场景中,3D声音的处理有其特别之处,类似于电影采用的技术并不能很好地解决 AR中3D音效的问题。

     在电影院中,观众的位置是固定的,因此可以通过在影院的四周都加装上音响设备,通过设计不同位置音响设备上声音的大小和延迟,就能给观众营造逼真的3D 声音效果。经过大量的研究与努力,人们根据人耳的结构与声音的传播特性开发出了很多技术,可以只用两个音响或者耳机就能模拟出3D音效,这种技术叫双耳声(Binaural Sound),它的技术原理如图11-2所示。

在图11-2中,从声源发出来的声音会直接传播到左耳和右耳,但因为左耳离声源近,所以声音会先到达左耳再到达右耳,由于在传播过程中的衰减,左耳听到的声音要比右耳大,这是直接的声音信号,大脑会接收到两只耳朵传过来的信号。同时,从声源发出的声音也会被周围的物体反射,这些反射与直接信号相比有一定的延迟并且音量更小,这些是间接的声音信号。大脑会采集到直接信号与所有的间接信号并比较从左耳与右耳采集的信号,经过分析计算,从而达到定位声源的效果。在了解大脑的工作模式后,就可以通过算法控制两个音响或者耳机的音量与延迟来达到模拟3D声源的效果,让大脑产生出虚拟的3D声场效果。

3D声场原理

      3D声场,也称为三维音频、虚拟3D音频、双耳音频等,它是根据人耳对声音信号的感知特性,使用信号处理的方法对到达两耳的声音信号进行模拟,以重建复杂的空间声场。

      通俗地说就是把耳朵以外的世界看作一个系统,对任意一个声音源,在耳膜处接收到信号后,三维声场重建就是把两个耳朵接收到的声音尽可能准确地模拟出来,让人产生听到三维音频的感觉。

      如前所述,当人耳在接收到声源发出的声音时,人的耳廓、耳道、头盖骨、肩部等对声波的折射、绕射和衍射及鼓膜接收到的信息会被大脑所接收,大脑通过经验对声音的方位进行判断。与大脑工作原理类似,在计算机中通过信号处理的数学方法,构建头部相关传输函数(HeadRelated Transfer Functions, HRTF),根据多组的滤波器计算人耳接收到的声源的“位置信息”。

    目前3D声场重建技术口冬比校成戴们不时加送之上术都假设用户是静止的(或者说与用户位置无关),而在 AR应用中,情况却有很大不同,AR应用的用户是随时移动的,这意味着用户周围的3D声音也需要调整,这一特殊情况导致目前的3D声场重建技术在AR应用时失效。

RealityKit 中的 3D 音效

      ARKit 通过世界跟踪功能定位声源位置,然后根据用户与声源的相对位置和方向自动混音,将3D音频技术带人 AR中。在 AR场景中放置一个声源,当用户接近或远离时,声音音量大小会自动增加或减弱,当用户围绕声源旋转时,声音也会呈现沉浸式的3D效果。在 RealityKit 中,使用3D音效的典型代码如代码如下所示,稍后我们将对代码进行详细解析。

//
//  Audio3DView.swift
//  ARKitDeamo
//
//  Created by zhaoquan du on 2024/3/22.
//import SwiftUI
import ARKit
import RealityKit
import Combinestruct Audio3DView: View {var body: some View {Audio3DViewContainer().navigationTitle("3D音频").edgesIgnoringSafeArea(.all)}
}struct Audio3DViewContainer:UIViewRepresentable {func makeUIView(context: Context) -> some ARView {let arView = ARView(frame: .zero)let config = ARWorldTrackingConfiguration()config.planeDetection = .horizontal//createPlane(arView: arView)arView.session.run(config)arView.createAudioPlane()return arView}func updateUIView(_ uiView: UIViewType, context: Context) {}static var audioEvent : Cancellable!func createPlane(arView:ARView){let planAnchor = AnchorEntity(plane: .horizontal)let boxMesh = MeshResource.generateBox(size: 0.2)let boxMaterial = SimpleMaterial(color: .red, isMetallic: true)let boxEntity = ModelEntity(mesh: boxMesh, materials: [boxMaterial])guard  let audio = try? AudioFileResource.load(named: "fox.mp3",in: .main, inputMode: .spatial,loadingStrategy: .preload,shouldLoop: false) else {return}let audioControler = boxEntity.prepareAudio(audio)audioControler.play()boxEntity.generateCollisionShapes(recursive: false)planAnchor.addChild(boxEntity)arView.scene.addAnchor(planAnchor)arView.installGestures(for: boxEntity)Audio3DViewContainer.audioEvent = arView.scene.subscribe(to: AudioEvents.PlaybackCompleted.self) { event inprint("音频播放完毕")}}
}
var audioEvent : Cancellable!
extension ARView{func createAudioPlane(){do{let planeAnchor = AnchorEntity(plane:.horizontal)let boxMesh = MeshResource.generateBox(size: 0.2)let boxMaterial = SimpleMaterial(color:.red,isMetallic: true)let boxEntity = ModelEntity(mesh:boxMesh,materials:[boxMaterial])let audio = try AudioFileResource.load(named:"fox.mp3",in:.main,inputMode: .spatial,loadingStrategy: .preload,shouldLoop: false)boxEntity.playAudio(audio)let audioController = boxEntity.prepareAudio(audio)audioController.play()boxEntity.generateCollisionShapes(recursive: false)planeAnchor.addChild(boxEntity)self.scene.addAnchor(planeAnchor)self.installGestures(.all,for:boxEntity)audioEvent = self.scene.subscribe(to: AudioEvents.PlaybackCompleted.self){ event inprint("音频播放完毕")}}catch{print("Error Loading audio file")}}
}#Preview {Audio3DView()
}

     编译运行 AR 应用,使用耳机(注意耳机上的左右耳塞勿戴反,一般会标有I.和 R字样)或者双通道音响体验3D音效,在检测到的平面放置虛拟立方体对象后,移动手机或者旋转手机朝向,体验在 AR场景中声源定位的效果。

从代码清单 11-3中我们可以看出,在 RealityKit 中使用3D音频分为3步:

(1) 加载音频。

(2)设置音频播放参数。

(3)将音频放置到 AR 场景中并播放。

下面我们针对这3个步骤进行详细学习。在 RealityKit 中使用音频,必须将音频加载为 AudioResource(或者其子类 AudioFileResource)类型对象才能正确播放,通常使用 AudioFileResource 类将音频从文件系统或者 URL 加载到内存中,该类有4个方法,可以同步/异步从文件/URL 中加载音频,如表11-2所示。

表 11-2 AudioFileResource 类加载音频方法

方法

描述

load (named: String, in: Bundle?,inputMode: AudioResource. InputMode,loadingStrategy: AudioFileResource. LoadingStrategy,shouldLoop: Bool)—>

AudioFileResource

同步从程序 Bundle 中加载音频

loadAsync(named: String,in: Bundle?, inputMode: AudioResource. InputMode,loadingStrategy: AudioFileResource. LoadingStrategy,shouldLoop: Bool)—>

LoadRequest < AudioFileResource >

异步从程序 Bundle 中加载音频

load ( contentsOf: URL, withName: String?, inputMode: AudioResource.

InputMode,loadingStrategy: AudioFileResource. LoadingStrategy,shouldLoop:

Bool) -> AudioFileResource

同步从 URL 中加载音频

load Async(contentsOf: URL, withName: String?, inputMode: AudioResource.

InputMode,loadingStrategy: AudioFileResource. LoadingStrategy,shouldLoop:

Bool) -> LoadRequest < AudioFileResource >

异步从 URL 中加载音频

       在 RealityKit 中加载音频与加载模型一样,每一种同步加载方法都有对应的异步加载方法。加载方法中的参数因加载方法不同而不同,基本的参数及其意义如表11-3所示。

表11-3 加载音频方法中各参数的意义

描述

方法

named

从 Bundle 中加载时文件路径与名称

contentsOf

从 URL 中加载时的 URL 地址

withName

从 URL 中加载时的音频名称

in

从程序 Bundle 中加载时音频所在 Bundle 名称

shouldLoop

布尔值,是否循环播放

loadingStrategy

AudioFileResource. LoadingStrategy 枚举类型,指定加载音频时的策略,共有两个枚举值:preload

(预加载音频,在使用之前将音频加载到内存中)、stream(流媒体编码,边加载边播放)。通常在使用时,preload 适合短小、内存占用少,播放频度高的音频,而 stream适合较长、播放频度低的音频

inputMode

AudioResource. InputMode 枚举类型,指定3D音频类型,共有3个枚举值:nonSpatial(不使用3D音效)、spatial(使用空间音效)、ambient(环境音效,声音不会随距离发生音量变化,但声音可以反映方向变化,如用户围绕声源转动时,音效会发生变化)

      在加载音频完成后,可以通过实体对象的 prepareAudio(_:)方法获取一个 AudioPlaybackController 类型的音频控制器,利用该控制器可以使用其 play()、pause()、stop()方法控制音频的播放,可以通过isPlaying 属性获取音频的播放状态,还可以设置音频的播放增益(gain)、速度(speed)、混音(reverb SendL.evel),及衰減(fade()方法)和音频播放完后的回调(completionHandler),可以满足音频使用的各类个性化需求。

     通常在 AR中使用3D,音频,需要将音频绑定到实体对象(Entity)上,当实体对象放置在场景中时,实体对象所在的空间位置即为声源位置,RealityKit 会根据用户设备所在空间位置与声源位置进行3D音效模拟,营造沉浸式的声场效果。

     利用 AudioPlaybackController 类可以很方便地控制音频的播放,而且可以重复地进行暂停、播放等操作,但如果只需要一次性地播放,也可以不使用该类,而直接使用boxEntity. playAudio(audio),这种方法更简洁,当音频播放完后即结束,特别适合3D物体音效模拟,如子弹击中柽物时的音频播放。

     在使用 AudioPlaybackController 类控制音频播放时,可以通过其 completionHandler 属性设置音频播放完后的回调函数。除此之外,也可以通过订阅 AudioEvents 事件进行后续处理,目前,音频只有一个AudioEvents. PlaybackCompleted 事件,即音频播放完毕事件。

     在订阅 AudioEvents事件时有两点需要注意,一是保存事件订阅的引用,不然无法捕获事件,具体可参阅第2章相关内容:三是只有当 shouldLoop 设置为 false(即不循环播放)时,才会触发 AudioEvents.PlaybackCompleted 事件。

相关文章:

【iOS ARKit】播放3D音频

3D音频 在前面系列中&#xff0c;我们了解如何定位追踪用户&#xff08;实际是定位用户的移动设备&#xff09;的位置与方向&#xff0c;然后通过摄像机的投影矩阵将虚拟物体投影到用户移动设备屏幕。如果用户移动了&#xff0c;则通过VIO 和 IMU更新用户的位置与方向信息&…...

ES学习日记(四)-------插件head安装和一些配套插件下载

前言 接上节,第三方插件选择了时间久,功能丰富,长得丑的head,head 插件在ES 5版本以前开箱即用非常简单&#xff0c;ES 5版本以后需要运行在node环境下&#xff0c;所以我们要先准备一下环境 一.安装Git 不装了,明儿再说,看会儿手机准备下班!!!!!!!!!...

flask+uwsgi+云服务器 部署服务端

参考&#xff1a;使用uwsgi部署flask 报错 “找不到Python应用程序&#xff0c;请检查启动日志以查找错误” 或者&#xff1a; no python application found, check your startup logs for errors debug 过程&#xff1a;查到Python uWSGI 安装配置 里面说&#xff0c;先写测…...

linux学习之路 -- 普通用户添加进sudoer列表

在Linux系统里&#xff0c;很多的操作普通用户是不能执行的&#xff0c;所以我们需要对普通用户进行提权操作&#xff0c;可我们会发现&#xff0c;一开始没有配置的话&#xff0c;是无法的提权操作的&#xff0c;下面我将介绍普通用户该如何配置sudoer列表。 首先以root 的身…...

【分类评估指标,精确率,召回率,】from sklearn.metrics import classification_report

from&#xff1a; https://zhuanlan.zhihu.com/p/368196647 多分类 from sklearn.metrics import classification_report y_true [0, 1, 2, 2, 2] y_pred [0, 0, 2, 2, 1] target_names [class 0, class 1, class 2] # print(classification_report(y_true, y_pred, targe…...

element-ui autocomplete 组件源码分享

紧接着 input 组件的源码&#xff0c;分享带输入建议的 autocomplete 组件&#xff0c;在 element-ui 官方文档上&#xff0c;没有这个组件的 api 目录&#xff0c;它的 api 是和 input 组件的 api 在一起的&#xff0c;看完源码之后发现&#xff0c;源码当中 autocomplete 组件…...

视觉SLAM理论与实践的学习链接汇总

仅供学习&#xff0c;在此感谢所有乐于分享知识的大佬们~ 一、 ORB_SLAM理论 视觉SLAM 前端 后端 回环 建图 1、 前端视觉里程计 1.1 特征点法 一文带你搞懂相机内参外参(Intrinsics & Extrinsics)-知乎 VSLAM 笔记——我们如何通过图像来计算位姿的变化&#xff…...

极光笔记|极光消息推送服务的云原生实践

摘要 极光始终秉承“以开发者为中心”的战略导向&#xff0c;极光推送&#xff08;JPush&#xff09;是国内领先的消息推送服务。极光推送&#xff08;JPush&#xff09;本质上是一种软件付费应用程序&#xff0c;结合当前主流云厂商基础施设&#xff0c;逐渐演进成了云上SaaS…...

高效八股文背诵方法

往往到了找工作高峰期&#xff0c;经常会出现八股文很多 难以背诵 的苦恼&#xff0c;下面在下结合情况&#xff0c;列举了几点自认为可以的背诵方法&#xff1a; 1. **大声朗读**&#xff1a; - 对于Java核心概念和重要理论&#xff0c;先大声朗读&#xff0c;这不仅可以帮…...

Codeforces Round 841 (Div. 2) C. Even Subarrays

题目 思路&#xff1a; #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back #define fi first #define se second #define lson p << 1 #define rson p << 1 | 1 const int maxn 1e6 5, inf 1e9, maxm 4e4 5; co…...

用 SpringBoot+Redis 解决海量重复提交问题

1前言 在实际的开发项目中,一个对外暴露的接口往往会面临很多次请求&#xff0c;我们来解释一下幂等的概念&#xff1a;任意多次执行所产生的影响均与一次执行的影响相同。按照这个含义&#xff0c;最终的含义就是 对数据库的影响只能是一次性的&#xff0c;不能重复处理。如何…...

前端基础知识html

一.基础标签 1.<h1>-<h6>:定义标题&#xff0c;h最大&#xff0c;h最小 2.<font>&#xff1a;定义文本的字体&#xff0c;尺寸&#xff0c;颜色 3.<b>&#xff1a;定义粗体文本 4.<i>&#xff1a;定义斜体文本 5.<u>&#xff1a;定义文本下…...

网络原理-传输层-UDP报文结构

本文介绍UDP报文 有很多友友搞不清楚UDP报文的详细结构还有TCP的详细结构,所以专门分开来讲 以免弄混. 首先我们先看一下整个UDP结构,让大家有一个全方面的认识 下面我们来详细解释UDP报 16位源端口号(本机):就是2字节大小,16个二进制位. 16位目的端口号(目的机):也是2字节…...

TCP/IP参考模型(四层及其解析)

文章目录 1、什么是TCP/IP2、四层协议2.1 应用层&#xff08;应用程序协议&#xff09;2.2 传输层&#xff08;源端口↔️目的端口&#xff09;2.3 网络层&#xff08;主机↔️主机&#xff09;2.4 网络接口层&#xff08;主机↔️网络层&#xff09; 总结 1、什么是TCP/IP TC…...

2024第六届环境科学与可再生能源国际会议能源 (ESRE 2024) 即将召开!

2024第六届环境科学与可再生能源国际会议 能源 &#xff08;ESRE 2024&#xff09; 即将举行 2024 年 6 月 28 日至 30 日在德国法兰克福举行。ESRE 2024 年 旨在为研究人员、从业人员和专业人士提供一个论坛 从工业界、学术界和政府到研究和 发展&#xff0c;环境科学领域的专…...

CentOS配置docker外部访问

CoreOS 官方文档提供的方法 官方文档&#xff1a;​​​​​​https://coreos.com/os/docs/latest/customizing-docker.html 新建 /etc/systemd/system/docker-tcp.socket 文件 [Unit] DescriptionDocker Socket for the API[Socket] # ListenStream127.0.0.1:2375 ListenStre…...

面试前端八股文十问十答第二期

面试前端八股文十问十答第二期 作者&#xff1a;程序员小白条&#xff0c;个人博客 相信看了本文后&#xff0c;对你的面试是有一定帮助的&#xff01;关注专栏后就能收到持续更新&#xff01; ⭐点赞⭐收藏⭐不迷路&#xff01;⭐ 1&#xff09;从输入URL到页面加载的全过程…...

【漏洞复现】大华综合安防监控管理平台 Digital Surveillance System系统存在RCE漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…...

ssm网上订餐管理系统开发mysql数据库web结构java编程计算机网页源码eclipse项目采用线性算法

一、源码特点 ssm 网上订餐管理系统是一套完善的信息系统&#xff0c;结合springMVC框架完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用SSM框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模…...

python 进程之由浅入深

进程测试 import osimport time while True:time.sleep(0.5)print("hahaha")print("self", os.getpid()) #获取自己的进程idprint("parent",os.getppid()) #parent 获取父进程的id互斥锁 # """ # 当多个进程共享一个数据时…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...