当前位置: 首页 > news >正文

更改chatglm认知

ChatGLM-Efficient-Tuning

下载源代码

下载ChatGLM-Efficient-Tuning
解压
在这里插入图片描述

创建虚拟环境

conda create --prefix=D:\CondaEnvs\chatglm6btrain python=3.10
cd D:\ChatGLM-Efficient-Tuning-main
conda activate D:\CondaEnvs\chatglm6btrain

安装所需要的包

pip install -r requirements.txt

在这里插入图片描述
在这里插入图片描述

修改测试数据

修改data下self_cognition.json
NAME和AUTHOR修改为自己想起的名字即可

训练

如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 bitsandbytes 库, 支持 CUDA 11.1 到 12.1.
查看cuda版本

nvcc --version

在这里插入图片描述
满足条件,安装windows下的LoRA

pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl

在这里插入图片描述

开始训练

单 GPU 微调训练

# 选择gpu显卡二选一,看自己的操作系统
# linux
# CUDA_VISIBLE_DEVICES=0 
# windows
# set CUDA_VISIBLE_DEVICES=0
python src/train_bash.py --stage sft --model_name_or_path path_to_your_chatglm_model --do_train --dataset alpaca_gpt4_zh --finetuning_type lora --output_dir path_to_sft_checkpoint --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 3.0 --plot_loss --fp16

在这里插入图片描述
在这里插入图片描述
AttributeError: type object ‘PPODecorators’ has no attribute ‘empty_cuda_cache’. Did you mean: ‘empty_device_cache’?
在这里插入图片描述
修改trl版本trl==0.7.2

pip install trl==0.7.2

在这里插入图片描述
ImportError: cannot import name ‘top_k_top_p_filtering’ from ‘transformers’

pip install torch==1.13.1

在这里插入图片描述

pip install accelerate==0.21.0
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia

ImportError: cannot import name ‘COMMON_SAFE_ASCII_CHARACTERS’ from 'charset_normalizer.constant

pip install chardet

cannot import name ‘LRScheduler’ from ‘torch.optim.lr_scheduler’

pip install transformers==4.29.1

在这里插入图片描述
在这里插入图片描述
下载数据集
https://huggingface.co/THUDM/chatglm-6b
在这里插入图片描述
在这里插入图片描述

python src/train_bash.py --stage sft --model_name_or_path path_to_your_chatglm_model --do_train --dataset self_cognition --finetuning_type lora --output_dir path_to_sft_checkpoint --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 3.0 --plot_loss --fp16 --model_name_or_path chatglm-6b

在这里插入图片描述
在这里插入图片描述
ValueError: Attempting to unscale FP16 gradients

pip install peft==0.4.0

在这里插入图片描述
Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
修改train_bash.py

import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

在这里插入图片描述
或者设置一下环境变量

set KMP_DUPLICATE_LIB_OK=TRUE

在这里插入图片描述
在这里插入图片描述

测试训练结果

python src/cli_demo.py --model_name_or_path chatglm-6b --checkpoint_dir path_to_sft_checkpoint 

在这里插入图片描述
训练的结果好像并不理想
在这里插入图片描述
下载0.1.0版本试试

git lfs install
git clone -b v0.1.0 https://huggingface.co/THUDM/chatglm-6bpython src/train_bash.py --stage sft --model_name_or_path path_to_your_chatglm_model --do_train --dataset self_cognition --finetuning_type lora --output_dir path_to_sft_checkpoint --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 3.0 --plot_loss --fp16 --model_name_or_path chatglm6b010python src/cli_demo.py --model_name_or_path chatglm6b010 --checkpoint_dir path_to_sft_checkpoint 

在这里插入图片描述
在这里插入图片描述

LLaMA-Efficient-Tuning

下载源代码

尝试还是不行,尝试LLaMA-Efficient-Tuning
下载源代码解压,创建新的虚拟环境
在这里插入图片描述

conda create --prefix=D:\CondaEnvs\llama python=3.10
cd D:\LLaMA-Factory-main
conda activate D:\CondaEnvs\llama

安装所需要的包
在这里插入图片描述

# pytorch GPU版本
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install transformers==4.37.2
pip install datasets==2.14.3
pip install accelerate==0.27.2
pip install peft==0.9.0
pip install trl==0.8.1pip install -r requirements.txt
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl

如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。

# linux
# export USE_MODELSCOPE_HUB=1 
# Windows 
set USE_MODELSCOPE_HUB=1

接着即可通过指定模型名称来训练对应的模型

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \--model_name_or_path modelscope/Llama-2-7b-ms \... # 参数同下

开启网页

# set CUDA_VISIBLE_DEVICES=0 
python src/train_web.py

在这里插入图片描述

命令行使用

set CUDA_VISIBLE_DEVICES=0 
python src/train_bash.py --stage pt --do_train --model_name_or_path path_to_llama_model --dataset wiki_demo --finetuning_type lora --lora_target q_proj,v_proj --output_dir path_to_pt_checkpoint --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 3.0 --plot_loss --fp16

qwen1.5-0.5b模型huggingface
qwen1.5-0.5b模型魔搭社区
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
预览命令

python src/train_bash.py --stage sft --do_train True --model_name_or_path Qwen/Qwen1.5-0.5B-Chat --finetuning_type lora --template qwen --dataset_dir data  --dataset identity,alpaca_gpt4_zh --cutoff_len 1024 --learning_rate 0.0002 --num_train_epochs 5.0 --max_samples 500 --per_device_train_batch_size 4  --gradient_accumulation_steps 4 --lr_scheduler_type cosine --max_grad_norm 1.0 --logging_steps 5 --save_steps 100 --warmup_steps 0 --optim adamw_torch --output_dir saves\Qwen1.5-0.5B-Chat\lora\test --fp16 True --lora_rank 8 --lora_alpha 16 --lora_dropout 0.1 --lora_target all --use_dora True --plot_loss True

NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.
在这里插入图片描述

pip install fsspec==2023.9.2

在这里插入图片描述

训练完毕,刷新适配器然后加载
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

chatglm类似,它支持很多模型

白嫖手册
参考
参考
参考
ChatGLM2-6B
https://github.com/hiyouga/ChatGLM-Efficient-Tuning/tree/main
https://github.com/hiyouga/ChatGLM-Efficient-Tuning/blob/main/examples/alter_self_cognition.md
微调
https://github.com/THUDM/ChatGLM-6B/tree/main/ptuning

相关文章:

更改chatglm认知

ChatGLM-Efficient-Tuning 下载源代码 下载ChatGLM-Efficient-Tuning 解压 创建虚拟环境 conda create --prefixD:\CondaEnvs\chatglm6btrain python3.10 cd D:\ChatGLM-Efficient-Tuning-main conda activate D:\CondaEnvs\chatglm6btrain安装所需要的包 pip install -r…...

WPF 界面命令绑定(MVVM结构)

1.创建模型数据类&#xff08;M&#xff09; /// <summary>/// 数据模型/// </summary>public class LoginDataModel{// 用户名private string _userName;public string UserName{get { return _userName; }set{_userName value;}}// 密码private string _passWor…...

常见手撕项目C++

常见手撕项目C 设计模式单例模式饿汉模式懒汉模式 策略模式策略接口实现具体的策略&#xff08;虚函数重写&#xff09;定义上下文用户调用 设计模式 单例模式 单例模式是一种常用的软件设计模式&#xff0c;其目的是确保一个类只有一个实例&#xff0c;并提供一个全局访问点来…...

创建一个批处理作业来处理大量数据,例如从数据库中读取数据并进行处理

创建一个批处理作业来处理大量数据&#xff0c;例如从数据库中读取数据并进行处理 要创建一个批处理作业来处理大量数据&#xff0c;您可以使用Spring Batch。Spring Batch是一个用于大规模批处理的框架&#xff0c;它提供了丰富的功能来处理复杂的批处理任务&#xff0c;如读…...

LeetCode 2.两数相加

给你两个 非空 的链表&#xff0c;表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的&#xff0c;并且每个节点只能存储 一位 数字。 请你将两个数相加&#xff0c;并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外&#xff0c;这两个数都不会以 0 …...

如何利用ChatGPT提升学术论文写作效率

ChatGPT无限次数:点击直达 如何利用ChatGPT提升学术论文写作效率 ChatGPT 是一种基于大规模预训练模型的自然语言处理工具&#xff0c;可以在各种文本生成任务中发挥作用&#xff0c;包括学术论文写作。利用ChatGPT&#xff0c;可以提高学术论文写作的速度和质量&#xff0c;帮…...

LLMs之Mistral:Mistral 7B v0.2的简介、安装和使用方法、案例应用之详细攻略

LLMs之Mistral&#xff1a;Mistral 7B v0.2的简介、安装和使用方法、案例应用之详细攻略 导读&#xff1a;Mistral AI首个7B模型发布于2023年9月&#xff0c;在基准测试中超越Llama 2 13B&#xff0c;一下子声名大振。Mistral 7B v0.2对应的指令调优版本Mistral-7B-Instruct-v0…...

深入解析Oracle数据库中的WITH AS(CTE)原理

Oracle数据库中的WITH AS子句&#xff08;也称为公用表表达式CTE(Common Table Expression)&#xff09;是一种高级查询构造工具&#xff0c;它允许在一条SQL语句的开始部分定义临时的结果集&#xff08;或称子查询&#xff09;&#xff0c;这个结果集可以被随后的查询主体多次…...

Linux 环境安装 Elasticsearch 8.X

安装前说明 首先确定操作系统&#xff0c;在Linux发行版上执行uname -a查看具体系统。我是Ubuntu系统&#xff0c;可以用直接用apt-get安装&#xff0c;也可以下载tar.gz包手动安装。使用apt-get安装更方便快速&#xff0c;但不同的文件会被安装到不同的目录&#xff0c;不方便…...

Java零基础-集合:函数式接口

哈喽&#xff0c;各位小伙伴们&#xff0c;你们好呀&#xff0c;我是喵手。 今天我要给大家分享一些自己日常学习到的一些知识点&#xff0c;并以文字的形式跟大家一起交流&#xff0c;互相学习&#xff0c;一个人虽可以走的更快&#xff0c;但一群人可以走的更远。 我是一名后…...

Redis Scan指令解析与使用示例

Redis Scan指令解析与使用示例 概念 想要从redis key列表中找到某个key&#xff0c;redis提供了一个简单粗暴的指令keys用来列出满足查询条件的所有key。 keys redis* keys redis*keykey指令非常简单&#xff0c;只要提供一个简单的正则表达式即可&#xff0c;但是有两个明显的…...

Qt+OpenGL入门教程(三)——绘制三角形

通过前两篇文章的学习&#xff0c;我想大家应该有了基本的理解&#xff0c;我们接下来实操一下。 创建Qt OpenGL窗口 QOpenGLWidget QGLWidget是传统QtOpenGL模块的一部分&#xff0c;与其他QGL类一样&#xff0c;应该在新的应用程序中避免使用。相反&#xff0c;从Qt5.4开始…...

springcloud基本使用(搭建eureka服务端)

创建springbootmaven项目 next next finish创建成功 删除项目下所有文件目录&#xff0c;只保留pox.xml文件 父项目中的依赖&#xff1a; springboot依赖&#xff1a; <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-s…...

第十二章:预处理命令

文章目录 第十二章&#xff1a;预处理命令宏定义无参宏定义带参数的宏定义 文件包含处理 第十二章&#xff1a;预处理命令 作用&#xff1a;由编译预处理程序对程序中的特殊命令作出解释&#xff0c;以产生新的源程序对其进行正式编译 C语言与其他语言的重要区别就是可以使用预…...

Game Audio Programming

音频编程时游戏开发中最容易忽略&#xff0c;学习资源又是很少的环节。接下来&#xff0c;你将和我探索人耳的工作机制。 what is sound? 我们可以解释电视机是如何通过眼睛传递视觉信息的&#xff0c;但却往往无法对听觉信息做出类似的解释。 对声音的科学研究被称为声学&…...

高风险IP来自哪里:探讨IP地址来源及其风险性质

在网络安全领域&#xff0c;高风险IP地址是指那些可能涉及恶意活动或网络攻击的IP地址。了解这些高风险IP地址的来源可以帮助网络管理员更好地识别和应对潜在的安全威胁。本文将探讨高风险IP地址的来源及其风险性质&#xff0c;并提供一些有效的应对措施。 风险IP查询&#xf…...

【每日跟读】常用英语500句(300~400)

【每日跟读】常用英语500句 I had to take a shower. 我洗了个澡 Go on in. 赶紧进去吧 Hold up. 等一下 They seem like nice people. 他们看起来像好人 Such a wonderful age. 如此美好的年纪 That’s very impressive. 真厉害 I can see that. 看得出来 You should …...

设计模式(7):装饰器模式

一.装饰器模式职责&#xff1a; 动态的为一个对象增加新的功能&#xff1b;装饰器是一种用于代替继承的技术&#xff0c;无须通过继承增加子类就能扩展对象的新功能&#xff0c;使用对象的关联关系代替继承关系&#xff0c;更加灵活&#xff0c;同时避免类型体系的快速膨胀。 …...

Flink SQL填坑记3:两个kafka数据关联查询

在一个项目中,实时生成的统计数据需要关联另外一张表(并非维表),需要统计的数据表是Kafka数据,而需要关联的表,由于不是维度,不能按照主键查询,所以如果放在MySQL上,将存在严重的性能问题,这个时候我想到用将两张表的数据都生成为Kafka数据,然后进行Join操作。中途发…...

移动平台实时动态多点光源方案:Cluster Light

一、什么是 Cluster Light&#xff0c;它具体如何实现多点光源效果&#xff1f; 对于移动设备&#xff0c;如何支持场景中大量的实时点光源一直以来都是比较棘手的问题&#xff0c;因此对于过去&#xff0c;往往有如下两种常规方案&#xff1a; 静态点光源直接烘焙&#xff0…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...