当前位置: 首页 > news >正文

数据挖掘(作业1)

实验开始前先配置环境

以实验室2023安装的版本为例:

1、安装anaconda:(anaconda自带Python,安装了anaconda就不用再安装Python了
下载并安装 Anaconda3-2022.10-Windows-x86_64.exe

自己选择安装路径,其他使用默认选项。

(1)在“Advanced Installation Options”中,
勾选“Add Anaconda3 to my PATH environment variable.”(“添加Anaconda至我的环境变量。”)。

(2)勾选“Register Anaconda3 as my default Python 3.9”。

2、安装pycharm
下载并安装 pycharm-community-2022.2.4.exe 

3、打开cmd窗口,输入以下命令

conda create -n  DMEv  pip python=3.8

 记住DMEV所在的磁盘路径

# 如需删除环境,使用命令 conda remove -n DMEv    --all

 安装要用到的Python库:
activate   DMEv  

pip install numpy==1.20.0 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install matplotlib==3.3.4 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install opencv_python==4.4.0.40 --index-url https://mirrors.aliyun.com/pypi/simple/

pip install scipy==1.6.0 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install scikit-learn==0.24.1 --index-url https://mirrors.aliyun.com/pypi/simple/ 

pip install h5py==2.10.0 --index-url https://mirrors.aliyun.com/pypi/simple/ 

pip install mnist==0.2.2 --index-url https://mirrors.aliyun.com/pypi/simple/ 


4、测试

在Pycharm中创建项目时,DMEV所在的路径下选择python.exe即可


在Pycharm中新建项目,配置 interpreter,运行以下代码:(没有报错,则导入成功
import cv2 as cv
import numpy as np
from sklearn.decomposition import PCA
import mnist
import matplotlib.pyplot as plt 

 

实验1 数据

一、实验目的

(1)练习和掌握python的基本使用。

(2)理解数据类型、数据质量、数据预处理、相似性和相异性度量的概念

(3)理解各种相似性和相异性度量(测度)及其含义,并且能编程计算。

二、实验内容

1编程实现任意给定两个相同维度的向量之间的欧氏距离计算函数dist_E(x,y)。

输入:两个任意k维向量x和y,其中k的值随由数据决定。如x=[3,20,3.5], y=[-3,34,7]。

import numpy as npdef dist_E(vect1, vect2):return np.sqrt(sum(np.power((vect1-vect2),2)))if __name__ == "__main__":x=np.array([3,20,3.5])y=np.array([-3,34,7])dist=dist_E(x,y)print(dist)

2编程实现任意给定两个相同维度的向量之间的夹角余弦相似度计算函数sim=sim_COS(x,y)。输入:两个任意k维向量x和y,其中k的值由数据决定。

import numpy as npdef sim_COS(x, y):num = x.dot(y.T)denom = np.linalg.norm(x) * np.linalg.norm(y)return num / denomif __name__ == "__main__":x=np.array([3, 2, 0, 5, 0, 0, 0, 2, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 1, 0, 2])sim=sim_COS(x,y)print(sim)

3编程实现任意给定两个相同维度的布尔向量之间的Jaccard系数计算函数dist1=dist_Jaccard(x,y)。

import numpy as npdef sim_Jaccard(vect1, vect2):sim=-1if(vect1.size!=vect2.size):print("length of input vectors must agree")else:ind1=np.logical_and(vect1==1,vect2==1)ind2=np.logical_or(vect1==1,vect2==1)x=vect1[ind1]y=vect2[ind2]n1=np.size(x)n2=np.size(y)sim=n1/n2return simif __name__ == "__main__":x=np.array([1, 0, 0, 0, 0, 0, 1, 0, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])dist=sim_Jaccard(x,y)print(dist)

4编程实现任意给定两个相同维度的布尔向量之间的简单匹配系数计算函数dist1=dist_SMC(x,y)。

import numpy as npdef sim_SMC(vect1, vect2):sim = -1if (vect1.size != vect2.size):print("length of input vectors must agree")else:ind0 = np.logical_and(vect1 == 0, vect2 == 0)ind1 = np.logical_and(vect1 == 1, vect2 == 1)ind2 = np.logical_or(vect1 == 1, vect2 == 1)x = vect1[ind1]y = vect1[ind2]z=vect1[ind0]n1 = np.size(x)n2 = np.size(y)n3 = np.size(z)sim = (n1+n3) / (n2+n3)return simif __name__ == "__main__":x=np.array([1, 0, 0, 0, 0, 0, 1, 0, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])dist=sim_SMC(x,y)print(dist)

相关文章:

数据挖掘(作业1)

实验开始前先配置环境 以实验室2023安装的版本为例: 1、安装anaconda:(anaconda自带Python,安装了anaconda就不用再安装Python了) 下载并安装 Anaconda3-2022.10-Windows-x86_64.exe 自己选择安装路径,其他使用默认…...

【UE4 RTS游戏】01-项目准备

步骤新建一个工程,选择俯视角游戏模板我命名工程如下:删除场景内的所有cube再删除Floor和Wall删除TopDownCharacter删除“NavgationMeshBoundVolume”删除“TamplateLabel”和“RecastNavMesh-Default”删除LightmassImportanceVolume、PostProcessVolum…...

登录系统账号检测--课后程序(Python程序开发案例教程-黑马程序员编著-第3章-课后作业)

实例8:登录系统账号检测 登录系统一般具有账号密码检测功能,即检测用户输入的账号密码是否正确。若用户输入的账号或密码不正确,提示 “用户名或密码错误”和“您还有*次机会”; 若用户输入的账号和密码正确,提示“登…...

CentOS8基础篇12:使用RPM管理telnet-server软件包

一、RPM包管理工具简介 RedHat软件包管理工具(RedHat Package Manager,RPM) RPM软件包工具常用于软件包的安装、查询、更新升级、校验、卸载以及生成.rpm格式的软件包等操作。 RPM软件包工具只能管理后缀是.rpm的软件包。软件包的命名格式: 软件名称…...

IT女神文章记录之自己

匆匆时光,一转眼自己已经从一个学生转变成一个职场工作者了刚出校园的时候,对职场充满了憧憬,觉得自己可以大展身手然后其实在我毕业后2年内,踏入码农阶段的时候,是一段非常压抑的工作,不知道谁能体会到那种…...

Compose 动画 (四) : AnimatedVisibility 各种入场和出场动画效果

AnimatedVisibility中的EnterTransition 和 ExitTransition ,用来配置入场/出场时候的动画效果。 默认的入场效果是 fadeIn() expandVertically() 默认的出场效果是 fadeOut() shrinkVertically() 1. EnterTransition和ExitTransition支持的动画 enter的参数类…...

notepad++学习小技巧

不要小瞧了notepadd 这个可是我们的cv好帮手。。。 实战1背景,我找一个同事要表结构 结果他给我了一个xml。顿时一懵,我也不知道为啥好像是从前端扣下来的。 建表我只需要 columnName, displayName当作是comment, dataTypeNamecolumnType借鉴…...

Android supports-screens 屏幕适配

基本概念 supports-screens用于设置屏幕相关,处于Manifest的子标签中。 使您能够指定应用支持的屏幕尺寸,并为比应用支持的最大屏幕还大的屏幕启用屏幕兼容性模式。请务必始终在应用中使用此元素指定应用支持的屏幕尺寸。 注意:建议不要在屏…...

操作系统基础知识介绍之Mixed CriticalitySystems——混合关键系统

一、发展背景 在嵌入式场景中,虽然Linux已经得到了广泛应用,但并不能覆盖所有需求,例如高实时、高可靠、高安全的场合。这些场合往往是实时操作系统 的用武之地。有些应用场景既需要Linux的管理能力、丰富的生态又需要实时操作系统的高实时、…...

【数据结构初阶】详解链表OJ题

目录一.删除链表中等于给定值的节点二.合并有序链表并返回三.链表的回文结构1.反转单链表2.返回非空链表的中间节点四.输出链表倒数第K个节点五.基于给定值x分割单链表六.返回两个链表的第一个中间节点一.删除链表中等于给定值的节点 我们先来看第一题(题目链接): 因为我们需…...

Java基本数据类型变量自动提升、强制类型转换、String基本类型使用

文章目录基本数据类型变量自动提升特殊情况强制类型转换String基本类型使用基本数据类型变量自动提升 规则: 将取值范围小(或容量小)的类型自动提升为取值范围大(或容量大)的类型 。 byte、short、char-->int-->…...

Redis锁与幂等性不得不说的故事

前言: 相信很多小伙伴对缓存锁都不陌生,但是简单的缓存锁想要用好还是需要一些功力。本文总结了笔者多年使用缓存所的一些心得,欢迎交流探讨~ 幂等模型: 幂等场景一般由查重写入两步操作组成,两步操作组成一个最小完…...

Spark 应用调优

Spark 应用调优人数统计优化摇号次数分布优化Shuffle 常规优化数据分区合并加 Cache优化中签率的变化趋势中签率局部洞察优化倍率分析优化表信息 : apply : 申请者 : 事实表lucky : 中签者表 : 维度表两张表的 Schema ( batchNum,carNum ) : ( 摇号批次&#xff0c…...

synchronized 与 volatile 关键字

目录1.前言1.synchronized 关键字1. 互斥2.保证内存可见性3.可重入2. volatile 关键字1.保证内存可见性2.无法保证原子性3.synchronized 与 volatile 的区别1.前言 synchronized关键字和volatile是大家在Java多线程学习时接触的两个关键字,很多同学可能学习完就忘记…...

【0成本搭建个人博客】——Hexo+Node.js+Gitee Pages

目录 1、下载安装Git 2、下载安装Node.js 3、使用Hexo进行博客的搭建 4、更改博客样式 5、将博客上传到Gitee 6、更新博客 首先看一下Hexo的博客的效果。 1、下载安装Git Git 是一个开源的分布式版本控制系统,可以有效、高速地处理从很小到非常大的项目版本…...

【面试实战】认证授权流程及原理分析

认证授权流程及原理分析 1、认证 (Authentication) 和授权 (Authorization)的区别是什么?2、什么是Cookie ? Cookie的作用是什么?如何在服务端使用 Cookie ?3、Cookie 和 Session 有什么区别?如何使用Session进行身份验证?1、认证 (Authentication) 和授权 (Authorizatio…...

TPM命令解析之tpm2_startauthsession

参考网址链接:tpm2-tools/tpm2_startauthsession.1.md at master tpm2-software/tpm2-tools GitHub 命令名称 tpm2_startauthsession 功能 启动一个TPM会话。 命令形式 tpm2_startauthsession [OPTIONS] 描述 启动一个TPM会话。默认是启动一个试验&#xff08…...

第14章 局部波动率模型

这学期会时不时更新一下伊曼纽尔德曼(Emanuel Derman) 教授与迈克尔B.米勒(Michael B. Miller)的《The Volatility Smile》这本书,本意是协助导师课程需要,发在这里有意的朋友们可以学习一下,思…...

云原生周刊:开源“赢了”,但它可持续吗?

日前召开的 State of Open 会议上,开源“赢了”,但如果政府和企业不站出来确保生态系统在未来的弹性和可持续性,那么它仍然会失败。 OpenUK 首席执行官 Amanda Brock 在开幕式上表示,数字化和开源在过去 5 到 10 年的进步提升了工…...

读《企业IT架构转型之道》

本书还没读完,暂摘抄一些概念,因为自身做的新系统也在转型,从单体式到一体化一年来遇到很多问题有技术上的,也有团队协作的,过程是痛苦且复杂的,所以在刚翻阅前几十页时候,对于淘宝技术团队转型…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

Kafka入门-生产者

生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅!

【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅! 🌱 前言:一棵树的浪漫,从数组开始说起 程序员的世界里,数组是最常见的基本结构之一,几乎每种语言、每种算法都少不了它。可你有没有想过,一组看似“线性排列”的有序数组,竟然可以**“长”成一棵平衡的二…...

对象回调初步研究

_OBJECT_TYPE结构分析 在介绍什么是对象回调前,首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例,用_OBJECT_TYPE这个结构来解析它,0x80处就是今天要介绍的回调链表,但是先不着急,先把目光…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题

20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题 2025/6/9 20:54 缘起,为了跨网段推流,千辛万苦配置好了网络参数。 但是命令iptables -t filter -F tetherctrl_FORWARD可以在调试串口/DEBUG口正确执行。…...

【大厂机试题解法笔记】矩阵匹配

题目 从一个 N * M(N ≤ M)的矩阵中选出 N 个数,任意两个数字不能在同一行或同一列,求选出来的 N 个数中第 K 大的数字的最小值是多少。 输入描述 输入矩阵要求:1 ≤ K ≤ N ≤ M ≤ 150 输入格式 N M K N*M矩阵 输…...